On the Optimal Speed of Sovereign Deleveraging with Precautionary Savings

Thomas Philippon¹ Francisco Roldán² UdeSA Alumni Conference

December 2017

¹NYU Stern, CEPR, NBER

²New York University

Basic tradeoff

- 1. Aggregate demand
 - Tax increases induce recessions in a *non-Ricardian* world.
- 2. Sovereign risk
 - Literature thinks of
 - 1. Exclusion and large ex-post **output** costs
 - Eaton-Gersovitz 1982, Arellano 2008, Mendoza-Yue 2012...
 - 2. Financial disruption
 - Gennaioli et al. 2014, Bocola 2016, Pérez 2016...
 - We emphasize precautionary behavior of those *ultimately* exposed.

Sovereign Risk

- We model domestic savers as exposed to sovereign risk
 - Savers hold (most of) sovereign debt
 - Pension funds
 - Insurance companies
 - Their pricing kernel matters for bank recapitalizations.
- Precautionary behavior matters for aggregate demand through
 - 1. lower consumption by savers
 - 2. lower price of government debt \implies higher taxes.
- Ricardian equivalence
 - Timing of debt repayment irrelevant
 - No effect from *default* risk
 - Haircuts just decrease the NPV of taxes.

Two Models

- 1. Two-period model with CARA preferences
 - $\cdot\,$ Toy model for closed forms
 - t = 1 ('short-run'): **Fixed** prices and wages, deleveraging shock
 - t = 2 ('long-run'): Flexible prices and wages.
- 2. Dynamic model with Epstein-Zin preferences
 - Quantatively explore optimal speed of deleveraging
 - Calibration to the Eurozone.
 - In both
 - Closed economy limit
 - Limits to **interest rate** movements (ZLB, ECB).

- Collects lump-sum taxes T_t, government purchases G
- Long-term debt B_t^g : decays at rate ρ , pays coupon κ
- Budget constraint

$$T_t + \frac{\mathbf{q}_t}{\mathbf{q}_t} \left(B_t^g - (1 - \rho) B_{t-1}^g \right) = \kappa B_{t-1}^g + G$$

- Normalize $\kappa = r + \rho$ so $q^* = 1$.
- Exogenous default risk (if default, haircut \hbar)

$$\pi\left(\frac{B_t^g}{\overline{Y}_t};\epsilon_t\right)$$

HOUSEHOLDS

- Two types
 - \cdot 1 χ savers with $\beta_{\rm s} > \beta_{\rm b}$ and an Euler equation
 - $\cdot \chi$ borrowers with

$$C_t^b = \frac{W_t^b}{P_t} N_t^b + B_t^h - B_{t-1}^h - T_t$$

and $B_t^h \leq \overline{B}_t^h$ (= in eq'm)

• Closed economy limit

$$(1-\chi)\mathbf{S}_{\mathsf{t}} = \mathbf{q}_{\mathsf{t}}B_{\mathsf{t}}^{g} + \chi \frac{B_{\mathsf{t}}^{h}}{R_{\mathsf{t}}^{h}}$$

• Linear in labor only

$$Y_t = \mathbf{N}_t \left(1 - \delta_t \Delta \right)$$

- $\cdot \mathbf{N}_{t} = N_{b,t}^{\chi} N_{s,t}^{1-\chi} \implies$ wage bill equal across types
- $\delta_t = 1$ if default happened before or at t
- $\cdot \ \Delta$ is output loss in case of default.
- Normalize steady-state to N = 1 + G, C = 1, W = 1.

Two-Period CARA Model

• Savers (and borrowers) maximize

$$e^{-\gamma C_1^i} - \kappa_n (N_1^i)^{\varphi} + \beta_i \mathbb{E}_1 \left[e^{-\gamma C_2^i} - \kappa_n (N_2^i)^{\varphi} \right]$$

- CARA/Cobb-Douglas: **Gross** debt positions irrelevant for aggregate labor supply
- Long-run with flexible prices

$$\mathbf{N}_2 = \mathbf{\bar{N}} = 1 + G$$

which means

$$C_2^{\rm s} = 1 + \frac{\chi}{1-\chi} \left[B_1^h + (1-\delta\hbar) B_1^g \right]$$

\cdot 3 equations

$$C_2^{\rm s} = 1 + \frac{\chi}{1 - \chi} \left(\bar{B}_1^h + B_1^g \right)$$
 (BC t = 2)

$$u'(C_1^{\rm s}) = \beta R_1 u'(C_2^{\rm s}) \tag{Euler}$$

$$C_{1}^{s} = \mathbf{N}_{1} - G - \frac{\chi}{1-\chi} \left(\frac{\bar{B}_{1}^{h} + B_{1}^{g}}{R_{1}} - \left(B_{0}^{g} + B_{0}^{h} \right) \right) \quad (BC \ t = 1)$$

• 3 main **effects**

\cdot 3 equations

$$C_2^{\rm s} = 1 + \frac{\chi}{1 - \chi} \left(\bar{B}_1^h + B_1^g \right)$$
 (BC t = 2)

 $u'(C_1^{\rm s}) = \beta R_1 u'(C_2^{\rm s}) \tag{Euler}$

$$C_{1}^{s} = \mathbf{N}_{1} - G - \frac{\chi}{1-\chi} \left(\frac{\bar{B}_{1}^{h} + B_{1}^{g}}{R_{1}} - \left(B_{0}^{g} + B_{0}^{h} \right) \right) \quad (BC \ t = 1)$$

- 3 main **effects**
 - Non-Ricardian

\cdot 3 equations

$$C_2^{\rm s} = 1 + \frac{\chi}{1 - \chi} \left(\overline{B}_1^h + B_1^g \right)$$
 (BC t = 2)

$$u'(C_1^s) = \beta R_1 u'(C_2^s)$$
(Euler)

$$C_{1}^{s} = \mathbf{N}_{1} - G - \frac{\chi}{1 - \chi} \left(\frac{\overline{B}_{1}^{h} + B_{1}^{g}}{R_{1}} - \left(B_{0}^{g} + B_{0}^{h} \right) \right) \quad (BC \ t = 1)$$

- 3 main effects
 - Private and public debts perfect substitutes for AD management

\cdot 3 equations

$$C_2^{\rm s} = 1 + \frac{\chi}{1 - \chi} \left(\bar{B}_1^h + B_1^g \right)$$
 (BC t = 2)

$$u'(C_1^s) = \beta R_1 u'(C_2^s)$$
(Euler)

$$C_{1}^{s} = \mathbf{N}_{1} - G - \frac{\chi}{1-\chi} \left(\frac{\bar{B}_{1}^{h} + B_{1}^{g}}{R_{1}} - \left(B_{0}^{g} + B_{0}^{h} \right) \right) \quad (BC \ t = 1)$$

• 3 main **effects**

• Multiplier of government debt =
$$\left(1 + \frac{1}{R_1}\right) \frac{\chi}{1-\chi}$$
 when $\beta R_1 = 1$.

C₁^s equals:

• A present-value curve (Euler + BC at time 2)

$$\mathcal{P}(B_1^g) = 1 + \frac{\chi}{1-\chi} \left(\bar{B}_1^h + B_1^g \right)$$

• A funding curve (BC at time 1)

$$\mathcal{F}(B_1^g; \mathbf{N}_1) = \mathbf{N}_1 - G - \frac{\chi}{1-\chi} \left(\frac{\overline{B}_1^h + B_1^g}{R_1} - \left(B_0^g + B_0^h \right) \right)$$

• Equilibrium output $Y_1 = \mathbf{N}_1$ determined at intersection.

EQUILIBRIUM WITHOUT SOVEREIGN RISK

Arrows measure change in N_1 after a given change in B_1^g .

EQUILIBRIUM WITHOUT SOVEREIGN RISK

Arrows measure change in N_1 after a given change in B_1^g .

EQUILIBRIUM WITHOUT SOVEREIGN RISK

Arrows measure change in N_1 after a given change in B_1^g .

FISCAL POLICY WITHOUT SOVEREIGN RISK

Circles = neutral. Stars = full employment. Squares = constant debt.

SOVEREIGN RISK

2 equations

1. Present-value curve

$$\mathcal{P}(B_1^g;\pi) = 1 + \frac{\chi}{1-\chi} \left(\bar{B}_1^h + B_1^g \right) - \frac{1}{\gamma} \log \left(1 - \pi + \pi e^{\gamma \frac{\chi}{1-\chi} \hbar B_1^g} \right)$$

2. Funding curve

$$\mathcal{F}(B_1^g, \mathbf{N}_1; q_1) = \mathbf{N}_1 - G - \frac{\chi}{1 - \chi} \left(\frac{\mathbf{q}_1 B_1^g + \bar{B}_1^h}{R_1} - (B_0^g + B_0^h) \right)$$

+

3. Default probability

$$\pi = \pi(B_1^g)$$

4. Price of debt

$$\mathbf{q}_{1} = \beta \left(1 - \hbar \pi (B_{1}^{g}) e^{\gamma (C_{1}^{s} - C_{2}(1))} \right)$$

• First pass: Martin and Philippon (2014) estimate

$$Spread_{t}^{crisis} = 1\% \cdot \mathbb{1}_{\{B_{t-2}^{g} \le 0.9\}} + \frac{10\%}{1} \cdot \mathbb{1}_{\{B_{t-2}^{g} > 0.9\}} \left(B_{t-2}^{g} - 0.9\right)$$

- + Back-of-the-envelope calculation to back out π
 - Also consider a post-2012 $\pi^{\text{normal}} = \frac{1}{3}\pi^{\text{crisis}}$.

EQUILIBRIUM WITH SOVEREIGN RISK

FISCAL POLICY WITH SOVEREIGN RISK: COMPLETE AGREEMENT!

Circles = neutral. Stars = full employment. Squares = constant debt.

DYNAMIC RISK-SENSITIVE MODEL

- Truncated infinite horizon
 - After some (large) \mathcal{T} , flexible prices and no risk
 - \cdot Before \mathcal{T} , rigid prices and wages
 - Government **default** can happen *once* at any t < T
- + Epstein-Zin preferences with EIS $\psi \neq$ CRA γ

$$\begin{split} V_{i,t}^{\frac{\psi-1}{\psi}} &= (1-\beta)u_{i,t}^{\frac{\psi-1}{\psi}} + \beta \left(\mathbb{E}_t \left[V_{i,t+1}^{1-\gamma} \right] \right)^{\frac{\psi-1}{\psi(1-\gamma)}} \\ u_t &= C_t^{\alpha} \left(\kappa_n - N_t \right)^{1-\alpha} \end{split}$$

• Stochastic discount factor of savers

$$M_{t+1} = \beta \left(\frac{C_{t+1}^{s}}{C_{t}^{s}}\right)^{-1} \left(\frac{u_{t+1}^{s}}{u_{t}^{s}}\right)^{\frac{\psi-1}{\psi}} \left(\frac{V_{s,t+1}}{\mathbb{E}_{t} \left[V_{s,t+1}^{1-\gamma}\right]^{\frac{1}{1-\gamma}}}\right)^{\frac{1}{\psi}-\gamma}$$

- Calibration to a (hypothetical) Greek-style default in Italy
- Private debt: From 80% to 70% of potential GDP over 5 years
- Unexpectedly, $\epsilon_t = 1$ for $t \geq 5$
- Consider different scenarios for public debt
 - 1. A benchmark no-risk simulation
 - 2. A range of deleveraging simulations
 - $\cdot\,$ All of them end at 90% of potential GDP
- Solution: backward induction from $\mathcal T$ $^{ ext{Details}}$

Deleveraging Constraints

- The government chooses a time T^d to start deleveraging
 - Changing the tax *rate* is costly

$$\frac{T_t}{Y_t} = \begin{cases} \tau_o & \text{if } 0 < t < T^d \\ \tau_d & \text{if } T^d \le t < 45 \\ \tau_p & \text{if } 45 \le t \end{cases}$$

• All paths reach $B_t^g = 90\%$ of potential GDP at t = 45

 After default, haircut ħ but deleveraging continues as planned.

$$B_t^{g,\delta=1} = (1-\hbar)B_t^{g,\delta=0}$$

PATHS OF DELEVERAGING

• Public: Expected to reach 110%, delever until 90% in 10 years

EARLY DELEVERAGING

Yellow: no risk; Red: deleveraging

EARLY DELEVERAGING

LATE DELEVERAGING

Welfare and Delay

Borrowers and savers disagree

OPTIMAL DELAY

OUTPUT LOSSES AND DELAY

Risk aversion makes output losses worse and steeper

Capitalized output loss on the no-default path with the borrower's discount factor

PRICE OF DEBT

- Risk aversion has a big impact on macro quantities
- Only a **modest** impact on asset prices.

- $\cdot\,$ Quantitative model of default risk with non-Ricardian features
 - Framework to think about tradeoffs in sovereign deleveraging
 - Optimal delay: about 2 years in baseline crisis calibration
- **Risk aversion** has big impact on macro aggregates (and asset prices)
 - Agg demand externalities + sticky prices
 - Tallarini
- Disagreement about delay
 - Two periods gives artificial commitment power

- 1. After default
 - **One** path. No more risk so $q^* = 1$ and constant $C_t^{s,\delta=1}$
 - Taxes from government BC

$$T_{t}^{\delta=1} + \mathbf{q}^{\star}(1-\hbar) \left(B_{t}^{g} - (1-\rho)B_{t-1}^{g} \right) = G + (1-\hbar)\kappa B_{t-1}^{g}$$

- Output from savers BC, $C_t^{b,\delta=1}$ from borrowers BC.
- 2. Before default
 - $\cdot\,$ 2 equations involving ${\bf sdf}:$ risk-free debt and government debt

$$\beta = (1 - \pi_t) M_{t+1}^{\delta = 0} + \pi_t M_{t+1}^{\delta = 1}$$

$$q_t^{\delta = 0} = (1 - \pi_t) M_{t+1}^{\delta = 0} \left(\kappa + (1 - \rho) q_{t+1}^{\delta = 0} \right) + \pi_t M_{t+1}^{\delta = 1} (1 - \hbar) \left(\kappa + (1 - \rho) q^* \right)$$

Back

DETAILS ON BACKWARD INDUCTION

- Given the price of debt $q_t^{\delta=0}$
- If B_t^g is known, plug in govt BC for taxes
 - Otherwise, tax rate $\frac{T_t^{\delta=0}}{Y_t^{\delta=0}}$ is known. **Guess** B_t^g and loop until taxes and output match target rate.
- With taxes, get **output** from savers BC
- Consumption of borrowers from borrowers BC or market clearing.
- $\cdot\,$ Outer loop with ${\it shooting}$ on
 - B^g_T for the no deleveraging simulation
 - + $\tau^{\rm H}$ for the deleveraging simulation

LATE DELEVERAGING

OUTPUT LOSSES AND DELAY

In normal times ($\pi^{normal} = \frac{1}{3}\pi^{crisis}$), delaying is better for output

Capitalized output loss on the no-default path with the borrower's discount factor

Parameter	Description	Value	Target
β	Savers' discount	0.995	2% annual interest
β_b	Borrower's discount	0.972	12% annual interest
χ	Proportion of borrowers	0.5	Standard
φ	Inverse Frisch elasticity	1	Standard
G	Government consumption	$20\% \times \overline{Y}$	italy 1999-2008.
С	Steady-state consumption	1	Normalization
ψ	Inter-temporal substitution	1	Standard
γ	Coefficient of risk aversion	10	Standard for asset pricing moments
α	Consumption share in utility function	0.40	W = 1 (normalization)
κ _n	Labor endowment	2.78	Work week of 36 hours

Back

Parameter	Description	Value	Target
ρ	Persistence of public debt	5%	Duration of Italian debt 2010
ħ	Haircut	50%	Greek default
Δ	Deadweight loss after default	10%	
θ	Hazard of low productivity state	1/10 per yea	r
B_T^g	Final public debt	$4 \cdot \overline{Y} \cdot 90\%$	Italy in Great Recession
B ^h ₀	Initial private debt	$4 \cdot \overline{Y} \cdot 80\%$	Italy in Great Recession
B_T^h	Final private debt	$4 \cdot \overline{Y} \cdot 70\%$	Italy in Great Recession
T _h	Length of private deleveraging	20	Italy in Great Recession

Back