# The Aggregate-Demand Doom Loop: Precautionary Motives and the Welfare Costs of Sovereign Risk

Francisco Roldán IMF

#### February 2021

The views expressed herein are those of the authors and should not be attributed to the IMF, its Executive Board, or its management.

• Sovereign risk associated with deep recessions

Output and Consumption in Spain





• Sovereign risk associated with deep recessions

Output and Consumption in Spain



Detrended data
 Trade balance
 Low demand?
 Nondurable consumption

- Spain: large contractions in output and consumption
  - $\ldots |\Delta C| > |\Delta Y|$
- Pattern consistent across EU countries
  - Spreads associated with contractions in output, consumption, and APCs

- Spain: large contractions in output and consumption
  - $\dots \ |\Delta C| > |\Delta Y|$
- · Pattern consistent across EU countries
  - Spreads associated with contractions in output, consumption, and APCs 
    Ore

- · Aggregate-demand doom loop rationalizes big recessions in response to sovereign risk
- Key: sovereign default risk boosts precautionary motives
- $\cdot\,$  New light on consumption response to sovereign risk
  - $\cdot$  Spanish households' wealth  $\sim$  100% of GDP pre-crisis. No consumption smoothing? lacksquare

- Potential defaults create
  - $\cdot$  Aggregate income losses
  - $\cdot$  Redistributive effects

 $\begin{array}{l} \longleftarrow \quad \mathsf{TFP} \ \mathsf{costs} \ \mathsf{of} \ \mathsf{default} \\ \leftarrow \quad \mathsf{Domestic} \ \mathsf{debt} \ \mathsf{holdings} \end{array}$ 

... Those who benefit from redistribution: high MPCs from current income, low from future income

- Extend a quantitative model of sovereign debt
  - Prominent role for households' income-fluctuations problem
    - Consumption vs savings, precautionary motives
    - Exposures to sovereign risk
  - Endogenous wealth distribution that interacts with gov't default choice
    - Bewley setup + portfolio choice
  - Nominal rigidities
    - Externality: households cut consumption more than planner
- · Default risk interacts with precautionary behavior

- Potential defaults create
  - · Aggregate income losses  $\leftarrow$  TFP costs of default
  - Redistributive effects

- $\leftarrow$  Domestic debt holdings

... Those who benefit from redistribution: high MPCs from current income, low from future income

- Extend a quantitative model of sovereign debt
  - Prominent role for households' income-fluctuations problem
    - · Consumption vs savings, precautionary motives
    - Exposures to sovereign risk
  - Endogenous wealth distribution that interacts with gov't default choice
    - Bewley setup + portfolio choice
  - Nominal rigidities
    - Externality: households cut consumption more than planner

- Potential defaults create
  - · Aggregate income losses  $\leftarrow$  TFP costs of default
  - Redistributive effects

- $\leftarrow$  Domestic debt holdings

... Those who benefit from redistribution: high MPCs from current income, low from future income

- Extend a quantitative model of sovereign debt
  - Prominent role for households' income-fluctuations problem
    - Consumption vs savings, precautionary motives
    - Exposures to sovereign risk
  - Endogenous wealth distribution that interacts with gov't default choice
    - Bewley setup + portfolio choice
  - Nominal rigidities
    - Externality: households cut consumption more than planner
- · Default risk interacts with precautionary behavior

# Feedback loop between spreads and output $\uparrow$ Spreads $\implies \downarrow$ Demand $\implies \downarrow$ Output $\implies \uparrow$ Spreads

# **Main Findings**

- Feedback explain significant portion of the crisis
  - 50-60% of output contraction
- Large welfare costs of sovereign risk
  - Volatility of output 50% with sovereign risk
  - Volatility of agg. consumption doubles
  - · Eliminating sovereign risk worth on average 3.1% of permanent consumption
    - As much as 8% at height of crisis
  - $\cdot$  Welfare losses from Spanish crisis
    - Value of 'Whatever it takes' speech: 2.26% of permanent consumption
    - · Cost of 11 quarters of crisis: 1.38% of permanent consumption
- · Distributional effects
  - $\cdot~$  Value of removing default risk regressive in crises / progressive overall

#### **Related Literature**

#### $\cdot\,$ Sovereign risk affecting the supply side through finance

Arellano, Bai and Mihalache (2020), Bocola (2016), Arellano, Bai and Bocola (2017), Arellano, Bai and Mihalache (2018), Balke (2017)

#### Domestic debt and default incentives

Gennaioli, Martin and Rossi (2014), Mengus (2014), Mallucci (2015), Pérez (2018), Sosa-Padilla (2018), D'Erasmo and Mendoza (2016), Ferriere (2016), Deng (2020) ...

#### · Sovereign risk and fiscal austerity

Cuadra, Sánchez, and Sapriza (2010), Romei (2015), Bianchi, Ottonello and Presno (2016), Anzoategui (2020), Philippon and Roldán (2018)

#### · Shocks affecting aggregate demand through redistribution

Auclert (2017), Eggertsson and Krugman (2012), Korinek and Simsek (2016), ...

 $\cdot$  Description of Model

- $\cdot$  Calibration and simulations
- $\cdot$  Crises

 $\cdot$  Concluding remarks

**Description of Model** 

#### **General Description**

- $\cdot$  Small open economy with
  - $\cdot \,$  Sovereign default risk
  - Uninsurable idiosyncratic risk + incomplete markets
  - · Nominal rigidities
- $\cdot$  Actors
  - Government
    - · Issues long-term debt, purchases goods, decides repayment
  - · Domestic households
    - Choose consumption, savings, and portfolio choice btw gov't bond + risk-free asset
    - $\cdot$  Differ in ex-post wealth + idiosyncratic income shock
  - Firms
    - Produce goods with labor subject to wage ridigities
  - $\cdot$  Foreigners
    - Lend to gov't + private agents, price all assets

At each *t*, the government

- Chooses repayment  $h_t \in \{1, 1 \hbar\}$
- + Follows fiscal rules for new issuances  $B'(S_t)$  and spending  $G(S_t)$ 
  - Can depend on full state:  $(B_t, \lambda_t, \xi_t, \zeta_t, z_t)$
- Must satisfy its budget constraint



 $\rightarrow T_t$  summarizes a default / austerity tradeoff

#### Households

 $\cdot\,$  Given govt's policies, aggregates, and evolution of the state

$$\begin{split} \mathsf{v}(\omega,\epsilon,\mathsf{S})^{\frac{\psi-1}{\psi}} &= \max_{c,a',b'} (1-\beta)c^{\frac{\psi-1}{\psi}} + \beta \mathbb{E} \left[ \left( \mathsf{v}(\underline{a'}+\mathsf{R}_{\mathsf{S},\mathsf{S'}}\underline{b'},\epsilon',\mathsf{S'}) \right)^{1-\gamma} \middle| \omega,\epsilon,\mathsf{S} \right]^{\frac{\psi-1}{\psi(1-\gamma)}} \\ &\text{subject to } p_{\mathsf{C}}(\mathsf{S})c + q^{\mathsf{h}}(\mathsf{S})a' + q^{\mathsf{g}}(\mathsf{S})b' = \omega + \ell(\mathsf{S})\epsilon - \mathsf{T}(\mathsf{S}) \\ &\ell(\mathsf{S}) = w(\mathsf{S})\mathsf{L}(\mathsf{S})(1-\tau) + \Pi(\mathsf{S}) \\ &\mathsf{R}_{\mathsf{S},\mathsf{S'}} = \mathbb{1}_{(\zeta'=1)}\kappa + (1-\rho)\left(1 - \hbar\mathbb{1}_{(\zeta=1)(\zeta'\neq1)}\right)q^{\mathsf{g}}(\mathsf{S'}) \\ &a' \ge \bar{a}; \qquad b' \ge 0 \\ &\mathsf{S'} = \Psi(\mathsf{S},\xi',z',h') \\ &\mathsf{Exog LoMs for } (\epsilon,\xi,z); \mathsf{prob of } h' \mathsf{ given } (\mathsf{S},\xi',z') \end{split}$$

# $\pi \uparrow \implies \mathbb{E} [w'L'] = \pi \mathbb{E} [w'L'|\zeta' \neq 1] + (1 - \pi) \mathbb{E} [w'L'|\zeta' = 1] \downarrow$ $q^{g} \downarrow \implies ex\text{-post capital losses} : \omega \downarrow \text{ for all}$ $\operatorname{cov}(R_{\mathsf{S},\mathsf{S}'}, sdf' \mid \mathsf{S}) \downarrow$

#### **Private Economy**

Given a government policy  $h(S, \xi', z'), B'(S), T(S, q^g)$ , in a comp eq'm

· Risk-neutral foreigners

$$q^{g}(\mathsf{S}) = \underbrace{\frac{1}{1+r^{\star}}}_{q^{h}(\mathsf{S})} \mathbb{E}\left[\underbrace{\mathbb{I}_{(\zeta'=1)}(1-\xi')\kappa}_{coupon} + \underbrace{(1-\rho)}_{depreciation} \underbrace{(1-\hbar \mathbb{I}_{(\zeta=1\cap\zeta'\neq1)})}_{potential\ haircut} \underbrace{q^{g}(\mathsf{S}')}_{resale\ price} \middle| \mathsf{S}\right]$$

• Firms

· Traded and nontraded goods, CES aggregator, wage rigidities

$$Y_{Nt} = L_{Nt}^{\alpha_N} \left( 1 - \Delta \mathbb{1}_{(\zeta \neq 1)} \right) \qquad \qquad Y_{Tt} = z_t L_{Tt}^{\alpha_T} \left( 1 - \Delta \mathbb{1}_{(\zeta \neq 1)} \right) \qquad \qquad w_t \ge \bar{w}$$

- Households
  - Approximation:  $\lambda_t = \log \mathcal{N}(\mu_t, \Sigma_t)$ . So  $S = (B, \mu, \sigma, \xi, \zeta, z)$

#### **Private Economy**

Given a government policy  $h(S, \xi', z'), B'(S), T(S, q^g)$ , in a comp eq'm

· Risk-neutral foreigners

$$q^{g}(\mathsf{S}) = \underbrace{\frac{1}{1+r^{\star}}}_{q^{h}(\mathsf{S})} \mathbb{E}\left[\underbrace{\mathbb{I}_{(\zeta'=1)}(1-\xi')\kappa}_{coupon} + \underbrace{(1-\rho)}_{depreciation} \underbrace{(1-\hbar \mathbb{I}_{(\zeta=1\cap\zeta'\neq1)})}_{potential\ haircut} \underbrace{q^{g}(\mathsf{S}')}_{resale\ price} \middle| \mathsf{S}\right]$$

- Firms
  - · Traded and nontraded goods, CES aggregator, wage rigidities

$$Y_{Nt} = L_{Nt}^{\alpha_{N}} \left(1 - \Delta \mathbb{1}_{(\zeta \neq 1)}\right) \qquad \qquad Y_{Tt} = z_{t} L_{Tt}^{\alpha_{T}} \left(1 - \Delta \mathbb{1}_{(\zeta \neq 1)}\right) \qquad \qquad w_{t} \geq \bar{w}$$

- Households
  - Approximation:  $\lambda_t = \log \mathcal{N}(\mu_t, \Sigma_t)$ . So  $S = (B, \mu, \sigma, \xi, \zeta, z)$

#### **Private Economy**

Given a government policy  $h(S, \xi', z'), B'(S), T(S, q^g)$ , in a comp eq'm

· Risk-neutral foreigners

$$q^{g}(\mathsf{S}) = \underbrace{\frac{1}{1+r^{\star}}}_{q^{h}(\mathsf{S})} \mathbb{E}\left[\underbrace{\mathbb{I}_{(\zeta'=1)}(1-\xi')\kappa}_{coupon} + \underbrace{(1-\rho)}_{depreciation} \underbrace{(1-\hbar \mathbb{I}_{(\zeta=1\cap\zeta'\neq1)})}_{potential\ haircut} \underbrace{q^{g}(\mathsf{S}')}_{resale\ price} \middle| \mathsf{S}\right]$$

- Firms
  - $\cdot\;$  Traded and nontraded goods, CES aggregator, wage rigidities

$$Y_{Nt} = L_{Nt}^{\alpha_{N}} \left(1 - \Delta \mathbb{1}_{(\zeta \neq 1)}\right) \qquad \qquad Y_{Tt} = z_{t} L_{Tt}^{\alpha_{T}} \left(1 - \Delta \mathbb{1}_{(\zeta \neq 1)}\right) \qquad \qquad w_{t} \geq \bar{w}$$

- $\cdot$  Households
  - Approximation:  $\lambda_t = \log \mathcal{N}(\mu_t, \Sigma_t)$ . So  $S = (B, \mu, \sigma, \xi, \zeta, z)$



$$Y_{N}^{d} = \varpi \left(\frac{p_{N}}{p_{C}}\right)^{-\eta} C + \frac{\vartheta_{N}}{p_{N}} G$$
$$Y_{N}^{s} = L_{N}^{\alpha_{N}} \left(1 - \mathbb{1}_{(\zeta \neq 1)} \Delta\right)$$
$$L_{N}^{d} = \left(\alpha_{N} \frac{p_{N}}{\max\{w, \bar{w}\}}\right)^{\frac{1}{1 - \alpha_{N}}}$$

$$\cdot \ C \downarrow \Longrightarrow \ p_N \downarrow \Longrightarrow \ w \downarrow$$

 $\cdot\,$  Wage rigidity creates price stickiness



$$Y_{N}^{d} = \varpi \left(\frac{p_{N}}{p_{C}}\right)^{-\eta} C + \frac{\vartheta_{N}}{p_{N}} G$$
$$Y_{N}^{s} = L_{N}^{\alpha_{N}} \left(1 - \mathbb{1}_{(\zeta \neq 1)} \Delta\right)$$
$$L_{N}^{d} = \left(\alpha_{N} \frac{p_{N}}{\max\{w, \bar{w}\}}\right)^{\frac{1}{1 - \alpha_{N}}}$$

$$\cdot \ C \downarrow \Longrightarrow \ p_N \downarrow \Longrightarrow \ w \downarrow$$

 $\cdot\,$  Wage rigidity creates price stickiness

#### The Government's Objective

- $\cdot B'_t$  and  $G_t$  are given functions of  $S_t$
- · Default / Repayment is an optimal choice
  - · Utilitarian objective

$$\mathcal{W}(\mathsf{S}) = \int \mathsf{v}(\mathsf{s},\mathsf{S}) d\lambda_{\mathsf{S}}(\mathsf{s})$$

- In period *t*, observe  $S_{t-1}$  and  $(\xi_t, z_t)$
- Gov't understands  $S_t = \Psi(S_{t-1}, \xi_t, z_t, \zeta_t)$
- · Default iff

$$\underbrace{\mathcal{W}\left(\Psi(\mathsf{S}_{t-1},\xi_t,z_t,\zeta_t\neq 1)\right)}_{\text{v under def}} - \underbrace{\mathcal{W}\left(\Psi(\mathsf{S}_{t-1},\xi_t,z_t,\zeta_t=1)\right)}_{\text{v under rep}} \geq \sigma_g \zeta_t^{\text{def}}$$

where  $\xi_t^{\mathsf{def}} \stackrel{\mathit{iid}}{\sim} \mathcal{N}(0, 1)$ 

Back to Timeline

#### The Government's Objective

- $\cdot B'_t$  and  $G_t$  are given functions of  $S_t$
- · Default / Repayment is an optimal choice
  - · Utilitarian objective

$$\mathcal{W}(\mathsf{S}) = \int \mathsf{v}(\mathsf{s},\mathsf{S}) d\lambda_{\mathsf{S}}(\mathsf{s})$$

# But $B_t$ , $\zeta_t$ are part of $S_t$ !

- Gov't understands  $S_t = \Psi(S_{t-1}, \xi_t, z_t, \zeta_t)$
- · Default iff

.

$$\underbrace{\mathcal{W}\left(\Psi(\mathsf{S}_{t-1},\xi_t,z_t,\zeta_t\neq 1)\right)}_{\text{v under def}} - \underbrace{\mathcal{W}\left(\Psi(\mathsf{S}_{t-1},\xi_t,z_t,\zeta_t=1)\right)}_{\text{v under rep}} \geq \sigma_g \xi_t^{\text{def}}$$

where  $\xi_t^{ ext{def}} \stackrel{\textit{iid}}{\sim} \mathcal{N}(0, 1)$ 

Back to Timeline

#### The Government's Objective

- $\cdot B'_t$  and  $G_t$  are given functions of  $S_t$
- Default / Repayment is an optimal choice
  - · Utilitarian objective

$$\mathcal{W}(\mathsf{S}) = \int \mathsf{v}(\mathsf{s},\mathsf{S}) d\lambda_{\mathsf{S}}(\mathsf{s})$$

- In period *t*, observe  $S_{t-1}$  and  $(\xi_t, z_t)$
- Gov't understands  $S_t = \Psi(S_{t-1}, \xi_t, z_t, \zeta_t)$
- · Default iff

$$\underbrace{\mathcal{W}\left(\Psi(\mathsf{S}_{t-1},\xi_t,z_t,\zeta_t\neq 1)\right)}_{\text{v under def}} - \underbrace{\mathcal{W}\left(\Psi(\mathsf{S}_{t-1},\xi_t,z_t,\zeta_t=1)\right)}_{\text{v under rep}} \geq \sigma_g \xi_t^{\text{def}}$$

where  $\xi_t^{ ext{def}} \stackrel{\textit{iid}}{\sim} \mathcal{N}(0, 1)$ 

Back to Timeline

# **Equilibrium Concept**

#### Definition

Given fiscal rules B'(S), G(S), an equilibrium consists of

- A government policy  $h'(S, \xi', z'), T(S)$
- Policy functions  $\{\phi_a, \phi_b, \phi_c\}(\mathbf{s}, \mathbf{S})$
- Prices  $p_C(S)$ ,  $p_N(S)$ , w(S),  $q^g(S)$ . Quantities  $L_N(S)$ ,  $L_T(S)$ ,  $\Pi(S)$ , T(S)
- + Laws of motion  $\mu'(\mathbf{S},\xi',\mathbf{z}';\mathbf{h}),\sigma'(\mathbf{S},\xi',\mathbf{z}';\mathbf{h})$

such that

- $\cdot\,$  The policy functions solve the household's problem
- $\cdot\;$  The laws of motion are consistent with the policy functions
- + Firms maximize profits,  $w(S) \geq \bar{w}$ , markets clear
- *h'* maximizes  $\mathcal{W}(\Psi(S, \xi', z', \cdot))$  for gov't, taxes respect budget constraint.

Algorithm

Calibration and simulations

#### Calibration

- Simulate model solution for 50000 years
- Agents believe  $\lambda_t = \log \mathcal{N}(\mu_t, \sigma_t)$
- Keep track of actual distribution

| Target                          | Model  | Data   |
|---------------------------------|--------|--------|
| AR(1) autocorr. coef $log(Y_t)$ | 0.971  | 0.966  |
| AR(1) std coef $log(Y_t)$       | 0.804% | 0.617% |
| AR(1) autocorr. coef $log(C_t)$ | 0.976  | 0.954  |
| $AR(1)$ std coef $log(C_t)$     | 0.953% | 1.22%  |
| AR(1) autocorr. coef spread     | 0.977  | 0.967  |
| AR(1) std coef spread           | 33.5   | 30.1   |
| Avg Debt-to-GDP                 | 50.3%  | 64.6%  |
| Std Debt-to-GDP                 | 10.1%  | 23.5%  |
| Avg unemployment                | 12%    | 15.9%  |
| Std unemployment                | 3.45%  | 6.09%  |
| Median dom holdings             | 40.1%  | 56.5%  |
| Avg wealth-to-GDP               | 91.9%  | 94.5%  |
| Avg wealth Gini                 | 49.2%  | 57.5%  |

# Models

| Moment                          | Benchmark | No default |
|---------------------------------|-----------|------------|
| AR(1) autocorr. coef $log(Y_t)$ | 0.971     | 0.809      |
| AR(1) std coef $log(Y_t)$       | 0.804%    | 0.514%     |
| AR(1) autocorr. coef $log(C_t)$ | 0.976     | 0.901      |
| AR(1) std coef $\log(C_t)$      | 0.953%    | 0.438%     |
| AR(1) autocorr. coef spread     | 0.977     | 0.871      |
| AR(1) std coef spread           | 33.5      | 0.135      |
| Avg Debt-to-GDP                 | 50.3%     | 40.3%      |
| Std Debt-to-GDP                 | 10.1%     | 1.66%      |
| Avg unemployment                | 12%       | 8.76%      |
| Std unemployment                | 3.45%     | 0.8%       |
| Median dom holdings             | 40.1%     | 241%       |
| Avg wealth-to-GDP               | 91.9%     | 90.1%      |
| Avg wealth Gini                 | 49.2%     | 49%        |
| Default frequency               | 1.13%     | 0%         |
| Welfare in repayment            | 0.891     | 0.919      |

Spreads



## Unemployment



19

# Crises

In simulated data

- · Record all episodes of
  - ... spreads above 400bps
  - ... but no default for 11 quarters (2010 September 2012)
  - ... spreads below 350bps at start (data-driven)
- Plot distribution of endogenous variables

Crises



Decompose output contraction between

- Shocks + wage rigidity
- Aggregate demand + default risk
- Compare against a no-default benchmark
  - Simulate the no-default economy with the same shocks
  - · Extract the same time periods

Key

Conditioning on high spreads only  $\implies$  economies differ in expectations + initial state

Decompose output contraction between

- Shocks + wage rigidity
- Aggregate demand + default risk
- Compare against a no-default benchmark
  - Simulate the no-default economy with the same shocks
  - · Extract the same time periods

# KeyConditioning on high spreads only $\Rightarrow$ economies differ in expectations + initial state

#### No default benchmark



- $\cdot$  Impulse-response function
  - Draw from ergodic distribution of no-default version
  - Switch to benchmark in t = 0 (2010Q1)
  - Switch back to no-default in t = 12 (2012Q3)
- Condition on no default + output contraction of > 4% (targeting 6% in data)
- Compare against a no-default benchmark
  - $\cdot$  With the same fiscal rule for debt
  - $\cdot$  With the same debt issuances

#### Key

Conditioning on high spreads  $\implies$  economies differ in expectations only

- $\cdot$  Impulse-response function
  - Draw from ergodic distribution of no-default version
  - Switch to benchmark in t = 0 (2010Q1)
  - Switch back to no-default in t = 12 (2012Q3)
- Condition on no default + output contraction of > 4% (targeting 6% in data)
- Compare against a no-default benchmark
  - $\cdot$  With the same fiscal rule for debt
  - $\cdot$  With the same debt issuances

# Key

Conditioning on high spreads  $\implies$  economies differ in expectations only

#### Costs of sovereign risk across the wealth distribution



**Concluding remarks** 

## **Concluding remarks**

- Interested in interaction between
  - 1. Sovereign default risk
  - 2. Precautionary behavior
  - + implications for amplification of shocks
- · Channel helps explain severity of recessions in debt crises
  - · Default risk exacerbates volatility of consumption and output
  - $\cdot\;$  Large welfare costs of sovereign risk
    - $\cdot \;$  about 3% of permanent consumption in unconditional average
    - about 3% in IRF exercise
- Key
  - · Savings against aggregate + redistributive effects if default
    - $\cdot$  Timing flips MPC / transfer argument

#### Spain in the Eurozone Crisis



#### Filtered Spanish output and consumption

Spain in the 2000s

#### Spain in the Eurozone Crisis



Trade balance for Spain

Spain in the 2000s

#### Low demand?

Factors Limiting Production



Spanish firms' self-reported limits to production

Source: Eurostat

#### Nondurable Consumption





#### Net Worth of Spanish households



#### **Fiscal Rules**

|                           | G <sub>t</sub> / | Y <sub>t</sub> | $\left(B_t' - (1-\rho)B_t\right)/Y_t$ |              |  |
|---------------------------|------------------|----------------|---------------------------------------|--------------|--|
|                           | (1)              | (2)            | (3)                                   | (4)          |  |
| Unemployment <sub>t</sub> | 0.031            | 0.073***       | 0.334**                               | 0.346***     |  |
|                           | (0.039)          | (0.015)        | (0.158)                               | (0.059)      |  |
| Unemployment <sup>2</sup> | 0.002            |                | 0.0001                                |              |  |
|                           | (0.001)          |                | (0.006)                               |              |  |
| $B_t/Y_t$                 | 0.010*           | -0.017***      | -0.010                                | 0.009        |  |
| -, -                      | (0.005)          | (0.002)        | (0.020)                               | (0.007)      |  |
| $(B_t/Y_t)^2$             | -0.0002***       |                | 0.0001                                |              |  |
|                           | (0.00004)        |                | (0.0001)                              |              |  |
| Net Exports,              | 0.009            | 0.007          | 0.046                                 | 0.019        |  |
|                           | (0.019)          | (0.012)        | (0.075)                               | (0.046)      |  |
| Net Exports <sup>2</sup>  | -0.0001          |                | -0.001                                |              |  |
|                           | (0.001)          |                | (0.003)                               |              |  |
| Mean FE                   | 20.675           | 21.085         | 1.079                                 | 0.571        |  |
| Country + Time FE         | $\checkmark$     | $\checkmark$   | $\checkmark$                          | $\checkmark$ |  |
| Observations              | 968              | 968            | 957                                   | 957          |  |
| Adj. R <sup>2</sup>       | 0.904            | 0.901          | 0.697                                 | 0.698        |  |

Standard errors in parentheses. \*\*\* p < 0.01, \*\* p < 0.05, \* p < 0.1.

#### Fiscal Rules (cont'd)





--- Observed --- Predicted

|                       | log Y <sub>t</sub> |                     | $\log C_t$   |                      | $\log C_t$   |                      |
|-----------------------|--------------------|---------------------|--------------|----------------------|--------------|----------------------|
|                       | (1)                | (2)                 | (3)          | (4)                  | (5)          | (6)                  |
| Spread <sub>t</sub>   | -0.007***          | -0.006***           | -0.014***    | -0.009***            | -0.007***    | -0.004***            |
| $B_t/Y_t$             | (0.001)            | (0.001)<br>-0.001** | (0.002)      | (0.001)<br>-0.002*** | (0.001)      | (0.001)<br>-0.002*** |
| log Y <sub>t</sub>    |                    | (0.000)             |              | (0.000)              | 0.995***     | (0.000)<br>0.807***  |
|                       |                    |                     |              |                      | (0.091)      | (0.067)              |
| Country + Time FE     | $\checkmark$       | $\checkmark$        | $\checkmark$ | $\checkmark$         | $\checkmark$ | $\checkmark$         |
| N                     | 143                | 143                 | 143          | 143                  | 143          | 143                  |
| Within-R <sup>2</sup> | 0.274              | 0.325               | 0.420        | 0.677                | 0.715        | 0.857                |

Standard errors in parentheses. \*\*\* p < 0.01, \*\* p < 0.05, \* p < 0.1.