The Perils of Bilateral Sovereign Debt

Francisco Roldán IMF César Sosa-Padilla Notre Dame & NBER

March 2025

The views expressed herein are those of the authors and should not be attributed to the IMF, its Executive Board, or its management.

Swap line: two lines of credit involving two central banks

- ... Each makes available some of its own currency to the other, for a fixed term
- ... Short-term arrangements (typically one year, typically renewed)
- Used to mainly involve AEs
 Fed-ECB-BoE-BoJ-SNB
 - ... to support lender-of-last-resort functions with multinational firms
- Large increase in bilateral swaps and loans involving EMs since early 2000s
 - ... for EM, swap resources are hard currency
 - ... for EM, swap can be used for financing BoP (or as borrowed reserves)
 - ... EMs borrowing from swap lines tend to use different counterparts

Question

Swap line: two lines of credit involving two central banks

... Each makes available some of its own currency to the other, for a fixed term ... Short-term arrangements (typically one year, typically renewed)

Used to mainly involve AEs
 Fed-ECB-BoE-BoJ-SNB

... to support lender-of-last-resort functions with multinational firms

- $\cdot\,$ Large increase in bilateral swaps and loans involving EMs since early 2000s
 - ... for EM, swap resources are hard currency
 - ... for EM, swap can be used for financing BoP (or as borrowed reserves)
 - ... EMs borrowing from swap lines tend to use different counterparts

Question

- Swap line: two lines of credit involving two central banks
 - ... Each makes available some of its own currency to the other, for a fixed term ... Short-term arrangements (typically one year, typically renewed)
- Used to mainly involve AEs Fed-ECB-BoE-BoJ-SNB

... to support lender-of-last-resort functions with multinational firms

- Large increase in bilateral swaps and loans involving EMs since early 2000s
 - ... for EM, swap resources are hard currency
 - ... for EM, swap can be used for financing BoP (or as borrowed reserves)
 - ... EMs borrowing from swap lines tend to use different counterparts

Question

- Swap line: two lines of credit involving two central banks
 - ... Each makes available some of its own currency to the other, for a fixed term ... Short-term arrangements (typically one year, typically renewed)
- Used to mainly involve AEs Fed-ECB-BoE-BoJ-SNB

... to support lender-of-last-resort functions with multinational firms

- Large increase in bilateral swaps and loans involving EMs since early 2000s
 - ... for EM, swap resources are hard currency
 - ... for EM, swap can be used for financing BoP (or as borrowed reserves)
 - ... EMs borrowing from swap lines tend to use different counterparts

Question

We abstract from currencies, collateral, and focus on the borrowing

Tradeoff

- Borrowing with bonds
 - ... interest rate reflects default risk
- Borrowing from the swap line
 - ... interest rate and drawings negotiated

I Defaulting on the debt does not mean defaulting on the swap

We abstract from currencies, collateral, and focus on the borrowing

Tradeoff

- Borrowing with bonds
 - ... interest rate reflects default risk
- Borrowing from the swap line
 - ... interest rate and drawings negotiated

I Defaulting on the debt does not mean defaulting on the swap

We abstract from currencies, collateral, and focus on the borrowing

Tradeoff

- Borrowing with bonds
 - ... interest rate reflects default risk
- Borrowing from the swap line
 - ... interest rate and drawings negotiated

!! Defaulting on the debt does not mean defaulting on the swap

- · Swap lines are an *example* of a new type of sovereign borrowing arrangement
 - Short maturity but rolled over, with renegotiation
 - Difficult to default on Central bank \neq Treasury
 - · Cheaper than borrowing on the market
- · Other examples: Central bank deposits, bilateral loans, IMF programs...

Risk-taking Incentives and Relational Overborrowing

Main findings

- Swap drawings small relative to debt, but
 - · Presence of swaps affects sovereign debt markets
 - ... can provide financing when other sources dry up ... can increase risk-taking
- Lending around or in default maximizes surplus in swap negotiations
 - · Availability of swaps in default:
 - ... raises the value of default
 - ... which increases the default frequency
 - ... and worsens borrowing terms in bond markets
 - · Without restricting swaps in default, welfare losses for the government
- · Swap lines induce relational overborrowing similar to the debt dilution problem
 - Surplus requires spreads spreads require risk

Risk-taking Incentives and Relational Overborrowing

Main findings

- Swap drawings small relative to debt, but
 - · Presence of swaps affects sovereign debt markets

... can provide financing when other sources dry up ... can increase risk-taking

- Lending around or in default maximizes surplus in swap negotiations
 - · Availability of swaps in default:
 - ... raises the value of default
 - ... which increases the default frequency
 - ... and worsens borrowing terms in bond markets
 - · Without restricting swaps in default, welfare losses for the government
- · Swap lines induce relational overborrowing similar to the debt dilution problem
 - Surplus requires spreads spreads require risk

Risk-taking Incentives and Relational Overborrowing

Main findings

- Swap drawings small relative to debt, but
 - · Presence of swaps affects sovereign debt markets

... can provide financing when other sources dry up ... can increase risk-taking

- Lending around or in default maximizes surplus in swap negotiations
 - · Availability of swaps in default:
 - ... raises the value of default
 - ... which increases the default frequency
 - ... and worsens borrowing terms in bond markets
 - · Without restricting swaps in default, welfare losses for the government
- Swap lines induce relational overborrowing similar to the debt dilution problem
 - \cdot Surplus requires spreads spreads require risk

· Central Bank swaps among advanced economies

... Bahaj and Reis (2021); Cesa-Bianchi, Eguren-Martin, and Ferrero (2022)

· Data on Central Bank swaps for EMs

... Perks, Rao, Shin, and Tokuoka (2021); Horn, Parks, Reinhart, and Trebesch (2023)

· Sovereign debt/default with interactions from 'official' debt

... Boz (2011), Hatchondo, Martinez, and Onder (2014), Arellano and Barreto (2024), Liu, Liu, and Yue (2025)

Model

Environment

The government of a small open economy borrows from a monopolist and from markets

• Income $y(z_t)$ follows an AR(1) process in logs

... Only one good, representative risk-averse household, expected utility

- Renegotiate the swap *m* each period
 - ... Involves a transfer x and a new loan size m'
 - ... Swap is non-defaultable \implies Repaying *m* is the natural threat point
- · Should expect

- $x = \frac{1}{1+r}m' m$
- ... Implicit interest rate r to vary over time
- ... Interest rate to reflect market power
- ... Interest rate to reflect outside options

Environment

The government of a small open economy borrows from a monopolist and from markets

• Income $y(z_t)$ follows an AR(1) process in logs

... Only one good, representative risk-averse household, expected utility

- Renegotiate the swap *m* each period
 - ... Involves a transfer **x** and a new loan size **m**'
 - ... Swap is non-defaultable \implies Repaying *m* is the natural threat point

· Should expect

$$x = \frac{1}{1+r}m' - m$$

- ... Implicit interest rate r to vary over time
- ... Interest rate to reflect market power
- ... Interest rate to reflect outside options

- At income state z and loan m, solve $\max_{x,m'} \mathcal{L}(x,m,m',z)^{\theta} \times \mathcal{B}(x,m,m',z)^{1-\theta}$ Lender surplus
- · Government (borrower) surplus

$$\mathcal{B}(x,m,m',z) = u(y(z)+x) + \beta \mathbb{E}\left[v(m',z') \mid z\right] - \left(u(y(z)-m) + \beta \mathbb{E}\left[v(0,z') \mid z\right]\right)$$

agreement: receive x, owe m

threat point: repay *m*, clean slate

• Lender surplus

$$\mathcal{L}(x, m, m', z) = \underbrace{a - x + \beta_L \mathbb{E}\left[h(m', z') \mid z\right]}_{\text{agreement}} - \underbrace{\left(a + m + \beta_L \mathbb{E}\left[h(0, z') \mid z\right]\right)}_{\text{threat point}}$$

• At income state *z* and loan *m*, solve

$$\max_{x,m'} \mathcal{L}(x,m,m',z)^{\theta} \times \mathcal{B}(x,m,m',z)^{1-\theta}$$

· Government (borrower) surplus

$$\mathcal{B}(x,m,m',z) = \underbrace{u(y(z)+x) + \beta \mathbb{E}\left[v(m',z') \mid z\right]}_{(u(y(z)-m)+\beta \mathbb{E}\left[v(0,z') \mid z\right])}$$

agreement: receive x, owe m'

threat point: repay *m*, clean slate

• Lender surplus

$$\mathcal{L}(x,m,m',z) = \underbrace{a - x + \beta_L \mathbb{E}\left[h(m',z') \mid z\right]}_{\text{agreement}} - \underbrace{\left(a + m + \beta_L \mathbb{E}\left[h(0,z') \mid z\right]\right)}_{\text{threat point}}$$

• At income state *z* and loan *m*, solve

$$\max_{x,m'} \mathcal{L}(x,m,m',z)^{\theta} \times \mathcal{B}(x,m,m',z)^{1-\theta}$$

· Government (borrower) surplus

$$\mathcal{B}(x,m,m',z) = \underbrace{u(y(z)+x) + \beta \mathbb{E}\left[v(m',z') \mid z\right]}_{(u(y(z)-m)+\beta} - \underbrace{u(y(z)-m) + \beta \mathbb{E}\left[v(0,z') \mid z\right]}_{(u(y(z)-m)+\beta}$$

agreement: receive x, owe m'

threat point: repay m, clean slate

• Lender surplus

$$\mathcal{L}(x, m, m', z) = \underbrace{a - x + \beta_L \mathbb{E}\left[h(m', z') \mid z\right]}_{\text{agreement}} - \underbrace{\left(a + m + \beta_L \mathbb{E}\left[h(0, z') \mid z\right]\right)}_{\text{threat point}}$$

• At income state *z* and loan *m*, solve

$$\max_{x,m'} \mathcal{L}(x,m,m',z)^{\theta} \times \mathcal{B}(x,m,m',z)^{1-\theta}$$

· Government (borrower) surplus

$$\mathcal{B}(x,m,m',z) = \underbrace{u(y(z)+x) + \beta \mathbb{E}\left[v(m',z') \mid z\right]}_{(u(y(z)-m)+\beta} - \underbrace{u(y(z)-m) + \beta \mathbb{E}\left[v(0,z') \mid z\right]}_{(u(y(z)-m)+\beta}$$

agreement: receive x, owe m'

threat point: repay m, clean slate

• Lender surplus

$$\mathcal{L}(x, m, m', z) = \underbrace{a - x + \beta_L \mathbb{E}\left[h(m', z') \mid z\right]}_{\text{agreement}} - \underbrace{\left(a + m + \beta_L \mathbb{E}\left[h(0, z') \mid z\right]\right)}_{\text{threat point}}$$

Monopolist Terms: Lender's Value Function

Monopolist Terms: Implicit Interest Rate

key requirement: threat point value decreasing in m

The threat point is less 'credible' when m is large

- This creates convexity in the lender's value function ... making the lender act 'as if' risk-loving
- $\cdot\,$ The lender initially subsidizes the loan to induce indebtedness and high profits
 - Gamble for debt overhang
- Initial subsidy and high rates consistent with B's risk aversion 'Participation constraint'

Period	t starts			Period	l t ends
	Private debt markets		Monopolist	 	
	Default choice	Debt Issuance	Bargaining	Consumption	$z' \sim F(\cdot \mid z)$
(b, r	n, z)	(b', b,	(b', b, (b', b))	(b', r)	" ",z)

- Debt is a geometrically-decaying coupon
 - ... for each unit, get q, pay κ , $(1 \rho)\kappa$, ... $(1 \rho)^{s-1}\kappa$
- Government enters first stage owing b in debt, m in swaps, income state z

$$v(b, m, z) = \max \left\{ v_R(b, m, z) + \epsilon_R, v_D(m, z) + \epsilon_D \right\}$$
$$v_R(b, m, z) = \max_{b'} w_R(b', b, m, z)$$

· Lenders in competitive markets need to anticipate interactions with the monopolist

$$\begin{aligned} q(b', b, m, z) &= \beta_L \mathbb{E} \left[(1 - 1_{\mathcal{D}}(b', m', z')) \left(\kappa + (1 - \rho) q(b'', b', m', z') \right) \mid z \right] \\ m' &= m'(b', b, m, z) \\ b'' &= b'(b', m', z') \end{aligned}$$

Debt is a geometrically-decaying coupon

... for each unit, get q, pay κ , $(1 - \rho)\kappa$, ... $(1 - \rho)^{s-1}\kappa$

• Government enters first stage owing b in debt, m in swaps, income state z

$$v(b, m, z) = \max \left\{ v_R(b, m, z) + \epsilon_R, v_D(m, z) + \epsilon_D \right\}$$
$$v_R(b, m, z) = \max_{b'} w_R(b', b, m, z)$$

· Lenders in competitive markets need to anticipate interactions with the monopolist

$$\begin{aligned} q(b', b, m, z) &= \beta_L \mathbb{E} \left[(1 - 1_{\mathcal{D}}(b', m', z')) \left(\kappa + (1 - \rho)q(b'', b', m', z') \right) \mid z \right] \\ m' &= m'(b', b, m, z) \\ b'' &= b'(b', m', z') \end{aligned}$$

Debt is a geometrically-decaying coupon

... for each unit, get q, pay κ , $(1 - \rho)\kappa$, ... $(1 - \rho)^{s-1}\kappa$

• Government enters first stage owing b in debt, m in swaps, income state z

$$v(b, m, z) = \max \left\{ v_R(b, m, z) + \epsilon_R, v_D(m, z) + \epsilon_D \right\}$$
$$v_R(b, m, z) = \max_{b'} w_R(b', b, m, z)$$

· Lenders in competitive markets need to anticipate interactions with the monopolist

$$q(b', b, m, z) = \beta_L \mathbb{E} \left[(1 - 1_{\mathcal{D}}(b', m', z')) (\kappa + (1 - \rho)q(b'', b', m', z')) \mid z \right]$$

$$m' = m(b, m, z)$$
same sdf as monopolist
$$b'' = b'(b', m', z')$$

Bargaining Stage with Monopolist

• At state z, owing debt b bonds and m on the swap and having issued b'

$$\max_{x,m} \mathcal{L}_{\mathcal{R}}(b', x, m, m', z)^{\theta} \times \mathcal{B}_{\mathcal{R}}(b', b, x, m, m', z)^{1-\theta}$$

Lender surplus

Lender's surplus

$$\mathcal{L}_{\mathcal{R}}(b', x, m, m', z) = \underbrace{(a - x + \beta_{L} \mathbb{E}\left[h(b', m', z') \mid z\right])}_{\text{agreement}} - \underbrace{(a + m + \beta_{L} \mathbb{E}\left[h(b', 0, z') \mid z\right])}_{\text{threat point}}$$

Government's surplus

$$\mathcal{B}_{R}(b', b, x, m, m', z) = \underbrace{u(y(z) + B(b', b, m, z) + x) + \beta \mathbb{E}\left[v(b', m', z') \mid z\right]}_{\text{agreement}} - \underbrace{\left(u(y(z) + B(b', b, m, z) - m) + \beta \mathbb{E}\left[v(b', 0, z') \mid z\right]\right)}_{\text{threat point}}$$

with $B(b', b, m, z) = q(b', b, m, z)(b' - (1 - \rho)b) - \kappa b$

Bargaining Stage with Monopolist

• At state z, owing debt b bonds and m on the swap and having issued b'

$$\max_{x,m} \mathcal{L}_{R}(b',x,m,m',z)^{\theta} \times \mathcal{B}_{R}(b',b,x,m,m',z)^{1-\theta}$$

• Lender's surplus

$$\mathcal{L}_{R}(b', x, m, m', z) = \underbrace{(a - x + \beta_{L} \mathbb{E} [h(b', m', z') \mid z])}_{\text{agreement}} - \underbrace{(a + m + \beta_{L} \mathbb{E} [h(b', 0, z') \mid z])}_{\text{threat point}}$$

Government's surplus

$$\mathcal{B}_{R}(b', b, x, m, m', z) = \underbrace{u(y(z) + B(b', b, m, z) + x) + \beta \mathbb{E}\left[v(b', m', z') \mid z\right]}_{\text{agreement}} - \underbrace{\left(u(y(z) + B(b', b, m, z) - m) + \beta \mathbb{E}\left[v(b', 0, z') \mid z\right]\right)}_{\text{threat point}}$$

with $B(\boldsymbol{b}',\boldsymbol{b},m,z) = q(\boldsymbol{b}',\boldsymbol{b},m,z)(\boldsymbol{b}'-(1-\rho)\boldsymbol{b})-\kappa\boldsymbol{b}$

Bargaining Stage with Monopolist

• At state z, owing debt b bonds and m on the swap and having issued b'

$$\max_{x,m} \mathcal{L}_{\mathcal{R}}(b',x,m,m',z)^{\theta} \times \mathcal{B}_{\mathcal{R}}(b',b,x,m,m',z)^{1-\theta}$$

• Lender's surplus

$$\mathcal{L}_{R}(b', x, m, m', z) = \underbrace{(a - x + \beta_{L} \mathbb{E}\left[h(b', m', z') \mid z\right])}_{\text{agreement}} - \underbrace{(a + m + \beta_{L} \mathbb{E}\left[h(b', 0, z') \mid z\right])}_{\text{threat point}}$$

• Government's surplus

$$\mathcal{B}_{\mathcal{R}}(b', b, x, m, m', z) = \underbrace{u(y(z) + B(b', b, m, z) + x) + \beta \mathbb{E}\left[v(b', m', z') \mid z\right]}_{\text{agreement}} - \underbrace{\left(u(y(z) + B(b', b, m, z) - m) + \beta \mathbb{E}\left[v(b', 0, z') \mid z\right]\right)}_{\text{threat point}}$$

with $B(b', b, m, z) = q(b', b, m, z)(b' - (1 - \rho)b) - \kappa b$

Lender's surplus

 $\mathcal{L}_{R}(\boldsymbol{b}',\boldsymbol{x},\boldsymbol{m},\boldsymbol{m}',\boldsymbol{z}) = (\boldsymbol{a} - \boldsymbol{x} + \beta_{L}\mathbb{E}\left[\boldsymbol{h}(\boldsymbol{b}',\boldsymbol{m}',\boldsymbol{z}') \mid \boldsymbol{z}\right]) - (\boldsymbol{a} + \boldsymbol{m} + \beta_{L}\mathbb{E}\left[\boldsymbol{h}(\boldsymbol{b}',\boldsymbol{0},\boldsymbol{z}') \mid \boldsymbol{z}\right])$

• Low rates when value of relationship $\mathbb{E}[h(b', m', z') - h(b', 0, z')]$ is high

Government's surplus

$$\mathcal{B}_{R}(\boldsymbol{b}',\boldsymbol{b},\boldsymbol{x},\boldsymbol{m},\boldsymbol{m}',\boldsymbol{z}) = u(y(\boldsymbol{z}) + B(\boldsymbol{b}',\boldsymbol{b},\boldsymbol{m},\boldsymbol{z}) + \boldsymbol{x}) + \beta \mathbb{E}\left[v(\boldsymbol{b}',\boldsymbol{m}',\boldsymbol{z}') \mid \boldsymbol{z}\right] \\ - \left(u(y(\boldsymbol{z}) + B(\boldsymbol{b}',\boldsymbol{b},\boldsymbol{m},\boldsymbol{z}) - \boldsymbol{m}\right) + \beta \mathbb{E}\left[v(\boldsymbol{b}',\boldsymbol{0},\boldsymbol{z}') \mid \boldsymbol{z}\right]$$

- · If default risk is low, not much role for monopolist
- Revenues from debt issuance B(b', b, m, z) modulate the value of the threat point ... When m B(b', b, m, z) is large: government willing to borrow at high rates

Lender's surplus

 $\mathcal{L}_{R}(\boldsymbol{b}',\boldsymbol{x},\boldsymbol{m},\boldsymbol{m}',\boldsymbol{z}) = (\boldsymbol{a} - \boldsymbol{x} + \beta_{L}\mathbb{E}\left[\boldsymbol{h}(\boldsymbol{b}',\boldsymbol{m}',\boldsymbol{z}') \mid \boldsymbol{z}\right]) - (\boldsymbol{a} + \boldsymbol{m} + \beta_{L}\mathbb{E}\left[\boldsymbol{h}(\boldsymbol{b}',\boldsymbol{0},\boldsymbol{z}') \mid \boldsymbol{z}\right])$

• Low rates when value of relationship $\mathbb{E}[h(b', m', z') - h(b', 0, z')]$ is high

Government's surplus

$$\mathcal{B}_{R}(b', b, x, m, m', z) = u(y(z) + B(b', b, m, z) + x) + \beta \mathbb{E}[v(b', m', z') | z] - (u(y(z) + B(b', b, m, z) - m) + \beta \mathbb{E}[v(b', 0, z') | z])$$

- · If default risk is low, not much role for monopolist
- Revenues from debt issuance B(b', b, m, z) modulate the value of the threat point ... When m B(b', b, m, z) is large: government willing to borrow at high rates

Quantitative Effects of Swap Lines

Calibration

• Calibrate to Argentina without swaps (as in Roch & Roldán, 2023)

	Parameter	Value
Sovereign's discount factor	β	0.9504
Sovereign's risk aversion	γ	2
Preference shock scale parameter	χ	0.02
Lender's bargaining power	θ	0.5
Risk-free interest rate	r	0.01
Duration of debt	ρ	0.05
Income autocorrelation coefficient	ρ_{z}	0.9484
Standard deviation of <i>y</i> _t	σ_z	0.02
Reentry probability	ψ	0.0385
Default cost: linear	d_{0}	-0.24
Default cost: quadratic	d_1	0.3

Calibration

• Calibrate to Argentina without swaps (as in Roch & Roldán, 2023)

	Parameter	Value
Sovereign's discount factor	β	0.9504
Sovereign's risk aversion	γ	2
Preference shock scale parameter	χ	0.02
Lender's bargaining power	heta	0.5
Risk-free interest rate	r	0.01
Duration of debt	ρ	0.05
Income autocorrelation coefficient	ρ_{z}	0.9484
Standard deviation of <i>y</i> _t	σ_z	0.02
Reentry probability	ψ	0.0385
Default cost: linear	d_{0}	-0.24
Default cost: quadratic	d_1	0.3

	No swap	Unrestricted, $ heta=$ 0.25	Unrestricted, $\theta = 0.5$
Avg spread (bps)	804	1,841	2,396
Std spread (bps)	470	1,099	1,541
$\sigma(\mathbf{c})/\sigma(\mathbf{y})$ (%)	111	111	110
Debt to GDP (%)	21.4	20.8	20.2
Swap to GDP (%)	0	3.74	3.32
Corr. swap & spreads (%)	-	53.8	62.2
Default frequency (%)	6.53	13.0	14.7
Welfare gains (rep)	-	-0.082%	-0.41%

• Swaps shoot up before and during defaults

Swaps around default events

• Also consider Limited versions: $m' \leq \Gamma(m)$ while in default

► More

· Swaps shoot up before and during defaults

Swaps around default events

• Also consider Limited versions: $m' \leq \Gamma(m)$ while in default

▶ Limited ▶ More

· Swaps shoot up before and during defaults

Swaps around default events

• Also consider Limited versions: $m' \leq \Gamma(m)$ while in default

Limited

More

•	Limited: entire swap must be repaid while in default	$\Gamma(m) = 0$
---	--	-----------------

	No swap	Unrestricted, $ heta=$ 0.5	Limited, $\theta = 0.5$
Avg spread (bps)	804	2,396	1,216
Std spread (bps)	470	1,541	779
$\sigma(\mathbf{c})/\sigma(\mathbf{y})$ (%)	111	110	113
Debt to GDP (%)	21.4	20.2	21.7
Swap to GDP (%)	0	3.32	1.05
Corr. swap & spreads (%)	-	62.2	69.4
Default frequency (%)	6.53	14.7	9.34
Welfare gains (rep)	_	-0.41%	-0.084%

Default Barriers with Swaps

· Unrestricted: default barrier moves inward, Limited: marginal impact

Debt levels at which $\mathcal{P}(b,m,z)$ crosses 50%

Default Barriers with Swaps

• Unrestricted: default barrier moves inward, Limited: marginal impact

Debt Tolerance with Swaps

• Unrestricted: default more often, Limited: marginal impact

Default Probability *P*(b,m,z)

Why are there more defaults with swaps?

Distribution of debt levels

Debt Prices with Swaps

Lower prices with same default rates: relational overborrowing similar to debt dilution

Debt Price q(b',b,m,z)

Monopolist's profits increasing in debt (cond. on repayment) – surplus requires spreads > 0

Risk-taking Incentives

Surplus on swap requires spreads > 0: monopolist provides incentives for risk taking

Risk-taking Incentives

Surplus on swap requires spreads > 0: monopolist provides incentives for risk taking

Welfare Effects of Swap Lines

Limited \succ Unrestricted, but...

Short-term debt: swaps beneficial – interest on the swap small wrt to whole debt stock

Exogenous Terms for Bilateral Loan

- · Bargaining over bilateral terms endogenously leads to punishment for deleveraging
- Explore interest rate rules of the form

$$r(b',m') = \max\{r, \alpha_0 + \alpha_b b' + \alpha_m m'\}$$

- Two versions
 - Risk-inducing rule: $\alpha_0 > 0, \alpha_b < 0, \alpha_m = 0$
 - Size-dependent (similar to surcharges): $\alpha_0 > 0, \alpha_b = 0, \alpha_m > 0$

	No swap	Size dependent <i>r</i>	Risk inducing r	Limited, $\theta = 0.5$
Avg spread (bps)	802	635	1,118	1,211
Std spread (bps)	454	241	1,051	753
$\sigma({m c})/\sigma({m y})$ (%)	112	120	118	113
Debt to GDP (%)	21.5	25.8	21.9	21.8
Swap to GDP (%)	0	2.32	1.37	1.05
Swap spread (bps)	_	836	2,267	408
Corr. swap & spreads (%)	_	50.2	43.6	70.1
Default frequency (%)	6.27	5.13	7.56	9.17
Welfare gains (rep)	_	0.61%	-0.094%	-0.084%

Concluding remarks

- Simple model with monopolist/fringe structure
- Strong interaction between two markets for sovereign debt ... even if swaps are **not** used intensely on the equilibrium path
- Market power crucial in model
 - ... how to discipline in model?
 - ... how to affect in reality?
- Large welfare effects, policy challenges
 - How to limit their use during defaults?
 - Relational overborrowing more gains from fiscal rules, state-contingent debt?
- Simple test to determine welfare gains of a new instrument

• Further conditioning on default events lasting exactly two years

Swaps around default events

Bacl

• With Limited: $\Gamma(m) = m$

Swaps around default events