# Central Bank Swap Lines as Bilateral Sovereign Debt* 

Francisco Roldán ${ }^{\dagger} \quad$ César Sosa-Padilla ${ }^{\ddagger}$<br>IMF<br>University of Notre Dame<br>and NBER

December 2023
Preliminary: please do not circulate


#### Abstract

We study the use, terms, and desirability of central bank swap lines for sovereign borrowing. We find that swaps, a type of bilateral debt, interact strongly with borrowing terms on international capital markets. The high frequency at which swaps can be renegotiated makes their interest rate reflect outside options and market power. We highlight how swaps worsen debt dilution problems and overborrowing, in particular through weakening the threat of autarky which typically sustains sovereign borrowing. Our model is consistent with the prevailing pattern of sovereign borrowing primarily occurring through bond markets, with swap lines serving as a "first line of defense" when debt repayment becomes difficult. Moreover, we identify significant welfare effects associated with having access to swaps.


JEL Classification $\mathrm{F}_{34}$, $\mathrm{F}_{41}$, G15

Keywords Sovereign debt, debt dilution, bilateral bargaining, Central Bank swap lines

[^0]
## Introduction

Central Bank swap lines have gained prominence after the global financial crisis and the Covid-19 pandemic. The number of outstanding bilateral swap lines reached 91 in 2020, from only a few in the early 2000s (Perks et al., 2021). Contracted amounts are also large: Perks et al. (2021) document that bilateral swap lines amounted to US\$ 1.9 trillion, or about $10 \%$ of worldwide gross international reserves by end-2020. So far, swap lines have been understood as precautionary instruments, supporting the Central Bank's lender-of-last-resort function with global banks in advanced economies (Bahaj and Reis, 2021; Cesa-Bianchi et al., 2022).

The identities of countries drawing from swap lines have also shifted, from a few advanced economies to emerging and frontier market economies, some of which have limited or no access to international capital markets (Perks et al., 2021; Horn et al., 2023). Finally, the usage of these instruments has shifted, from standing facilities designed to fend off adverse equilibria, similarly to deposit insurance, to drawn instruments potentially raising debt-sustainability questions.

In this paper, we study the role of Central Bank swap lines as alternative borrowing vehicles for sovereigns. We ask which circumstances create incentives for countries to use swap lines when private debt markets are also available. Finally, we investigate the relation between the terms of the swap and those offered by private creditors.

We consider a standard model of sovereign default with long-term debt (Leland, 1998; Hatchondo and Martinez, 2009; Arellano and Ramanarayanan, 2012), augmented with the presence of a monopolist with which it is possible to negotiate a bilateral loan (the swap line). While it is possible to default on private bonds as in other models, the costs of defaulting on the swap line are assumed to be prohibitive for the Central bank. There are three reasons for this assumption: first, reputation and credibility are central to Central bankers' jobs; second, renegotiation of rollover terms with only one counterparty is much simpler than with a multitude of bondholders; and third, most swap lines involve a small country borrowing from a larger one which could enforce punishments in case of default. In reality, defaults on swap lines have not been observed so far.

In our model, both instances of borrowing interact. Outcomes in private markets influence the threat points in the subsequent bilateral negotiation. At the same time, while the monopolist tries to extract surplus from the borrower by raising interest rates, it is constrained in its ability to do so by implicit competition from private markets. However, when default risk pushes up interest rates in private markets, the monopolist is able to follow suit and charge a premium on the bilateral loan. But because there is no default risk on this loan, such a premium only reflects the borrower's (lack of) outside options.

We find that the borrowing government resorts to bilateral loans sparsely and at times when default risk is present. Furthermore, by allowing consumption smoothing (and borrowing) in default, the possibility of bilateral debt raises the value, and hence the frequency, of default. In our parametrization, this leads to welfare losses for the borrowing government. A version of our model in which drawing on the swap during default is limited decreases these welfare losses but does not eliminate them, unless the bargaining power of the lender is small. Finally, we find that with short-term debt the swap can be welfare-improving, which highlights the interaction of debt dilution with the availability of bilateral loans.

Discussion of the Literature To be added.

Layout The rest of the paper is structured as follows. Section 2 introduces our model, starting with the case in which only bilateral loans are available. Section 3 describes the main model with both types of debt coexisting, while Section 4 analyzes its equilibrium. Finally, Section 5 concludes.

## 2. Model with bilateral loans only

We begin our analysis by studying a simple model in which only bilateral loans are possible. This first model serves to clarify the dynamics of bilateral lending and the strategy through which the monopolist extracts surplus from the borrower: subsidized terms while debt accumulates, combined with high interest rates when the debt stock becomes large and the borrower attempts to delever.

We model a small open economy borrowing from a monopolist. Loans (the swap line) are short-term and therefore effectively continuously renegotiated. At the start of $t$, let $v(m, z)$ represent the value attained by the government (or sovereign, or borrower) at income state $z$ and owing $m$ to the monopolist. The lender similarly attains a value $h(m, z)$.

At the beginning of period $t$, borrower and lender negotiate over the terms of the loan. Payment of the full amount $m$ extinguishes any debts and serves as a natural threat point. We use a simple Nash bargaining framework and set $\theta$ as the lender's bargaining power. The outcome of this negotiation is a transfer $x$ and a new loan size $m^{\prime}$ which solve

$$
\begin{equation*}
\max _{x, m^{\prime}} \mathcal{L}\left(x, m, m^{\prime}, z\right)^{\theta} \times \mathcal{B}\left(x, m, m^{\prime}, z\right)^{1-\theta} \tag{1}
\end{equation*}
$$

where $\mathcal{L}$ and $\mathcal{B}$ represent the lender and borrower's surplus functions. It will be useful to keep track of the implicit interest rate of the loan $r$ satisfying $x=\frac{1}{1+r} m^{\prime}-m$.

After negotiations are concluded and transfers settled, consumption takes place. The lender finances the transfer $x$ with a constant endowment $a$ and thus consumes $c_{L}=a-x$. Conversely, the borrower receives the transfer so $c=y(z)+x$. Under risk neutral preferences for the lender,

$$
\begin{aligned}
\mathcal{L}\left(x, m, m^{\prime}, z\right) & =a-x+\beta_{L} \mathbb{E}\left[h\left(m^{\prime}, z^{\prime}\right) \mid z\right]-\left(a+m+\beta_{L} \mathbb{E}\left[h\left(0, z^{\prime}\right) \mid z\right]\right) \\
& =-x-m+\beta_{L} \mathbb{E}\left[h\left(m^{\prime}, z^{\prime}\right)-h\left(0, z^{\prime}\right) \mid z\right]
\end{aligned}
$$

and similarly

$$
\mathcal{B}\left(x, m, m^{\prime}, z\right)=u(y(z)+x)-u(y(z)-m)+\beta \mathbb{E}\left[v\left(m^{\prime}, z^{\prime}\right)-v\left(0, z^{\prime}\right) \mid z\right]
$$

Notice that the choice of $m^{\prime}$ only involves continuation values $v$ and $h$, while the choice of $x$ only involves flow payoffs. Given a choice of $m^{\prime}$, the first-order condition for $x$ is

$$
\mathcal{B}\left(x, m, m^{\prime}, z\right) \theta=\mathcal{L}\left(x, m, m^{\prime}, z\right) u^{\prime}(y(z)+x)(1-\theta)
$$

Given the solution $x(m, z), m^{\prime}(m, z)$ to (1), the value functions satisfy

$$
\begin{align*}
& v(m, z)=u(y(z)+x(m, z))+\beta \mathbb{E}\left[v\left(m^{\prime}(m, z), z^{\prime}\right) \mid z\right] \\
& h(m, z)=a-x(m, z)+\beta_{L} \mathbb{E}\left[h\left(m^{\prime}(m, z), z^{\prime}\right) \mid z\right] \tag{2}
\end{align*}
$$

Finally, we normalize $a=0$, which allows us to interpret $h(m, z)$ as the expected present discounted value of transfers along the equilibrium path, or the lender's expected profits.

### 2.1 Equilibrium with bilateral loans only

We solve the model with bilateral loans only at a parametrization that illustrates the forces at play. We choose $\theta=0.5$ so the surplus is split equally between borrower and lender; we also set $\beta=\beta_{L}$ to isolate consumption smoothing and bargaining from the initial indebtedness that would result if the borrower was relatively impatient, which in sovereign debt models tends to be the relevant case.

Figure 1 summarizes the terms of the new loan for each level of income $z$ and initial loan size $m$. Unsurprisingly, the borrower economy delevers in high-income states and receives positive transfers in low-income ones. The monopolist makes intense use of the interest rate to extract surplus. When both debt and income are low, the monopolist offers subsidized and even negative rates. The benefit of incurring this cost is to induce high levels of debt, which make the borrower's threat point more costly to exercise. Once the loan size is large, repaying it in full becomes difficult and the monoplist is able to charge much higher interest rates, even going above $10 \%$ (for a discount rate of about $2 \%$ ) in the higher income states.


Figure 1: Monopolist's terms with $\theta=0.5$

Figure 2 shows the value functions $v$ and $h$ for borrower and lender. As indebtedness $m$ increases, the borrower's threat point becomes less credible, which allows the lender to charge higher interest rates and create more surplus. This effect creates convexity in the lender's profits and, hence, in the value function $h$.


Figure 2: Value functions, $\theta=0.5$

Convexity in the lender's value function implies endogenously risk-loving behavior. In equilibrium, the lender gambles for debt overhang. Subsidizing the loan in order to induce high indebtedness only pays off if the borrower's income takes a long time to revert. If the borrower receives a favorable income shock quickly, the loan is repaid before the monopolist has had an opportunity to raise rates and collect profits.

Figure 3 shows a simulation path, which further clarifies the lender's strategy. The swap is subsidized on the way up and, once debt has accumulated, the interest rate can increase to extract profits from the borrower. The borrower government anticipates these dynamics: the relationship between the initial subsidy and the expected high rates later on is disciplined by an implicit participation constraint (or a literal one when $\theta=1$ ).


Figure 3: Simulated path, $\theta=0.5$

Figure 11 in the Appendix, which simulates a model with $\theta=0$, shows that when the borrower holds all the bargaining power, it is able to borrow at rate $\beta_{L}^{-1}$ at all times. Because rates do not go up once the loan is large, they cannot be negative when it is still small. This effectively recovers an income fluctuations problem at the risk-free rate without default.

## 3. Model with defaultable debt and swaps

In this section we present the full version of our model, in which the borrowing government has access to the monopolist as well as a competitive fringe of lenders. Default on the debt $b$ held by competitive lenders is possible, subject to standard output costs of default. However, for the same reasons as before, bilateral loans $m$ cannot be defaulted on.

A period takes place as follows.

## Period $t$ starts

## Period $t$ ends

| Private debt markets | Monopolist |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Default choice | Debt Issuance | Bargaining | Consumption | $z^{\prime} \sim F(\cdot \mid z)$ |
| $(b, m, z)$ | $\left(b^{\prime}, b, m, z\right)$ | $\left(b^{\prime}, b, x, m^{\prime}, z\right)$ | $\left(b^{\prime}, m^{\prime}, z\right)$ |  |

## Figure 4: Timeline of events while not in default

At the start of $t$, the government owes $m$ to the monopolist, $b$ to the fringe, and observes the exogenous state z. Additionally, the economy can be in default $(\zeta=1)$ or in repayment $(\zeta=0)$. Let $v(b, m, z)$ and $h(b, m, z)$ represent the government's and the monopolist's value functions in case of repayment, and similarly $v_{D}(m, z)$ and $h_{D}(m, z)$ in case of default.

Private markets In the morning of $t$, first, the government decides default for the current period if it is in repayment.

$$
\begin{equation*}
v(b, m, z)=\max \left\{v_{R}(b, m, z)+\varepsilon_{R}, v_{D}(m, z)+\varepsilon_{D}\right\} \tag{3}
\end{equation*}
$$

where the $\varepsilon$ 's follow a Type 1 Extreme Value distribution, yielding closed forms for $v(b, m, z)$ and the ex-post default probability $\mathcal{P}(b, m, z)$

$$
\begin{aligned}
v(b, m, z) & =\chi \log \left(\exp \left(v_{D}(m, z) / \chi\right)+\exp \left(v_{R}(b, m, z) / \chi\right)\right) \\
\mathcal{P}(b, m, z) & =\frac{\exp \left(v_{D}(m, z) / \chi\right)}{\exp \left(v_{D}(m, z) / \chi\right)+\exp \left(v_{R}(b, m, z) / \chi\right)}
\end{aligned}
$$

If it is not in default, the government issues new debt $b^{\prime}$ to the fringe of lenders understanding the value of entering negotiations with the monopolist having issued debt $b^{\prime}$

$$
\begin{equation*}
v_{R}(b, m, z)=\max _{b^{\prime}} w_{R}\left(b^{\prime}, b, m, z\right) \tag{4}
\end{equation*}
$$

The price faced by the borrower government reflects its lenders' expectations of repayment, discounted with a risk-neutral kernel

$$
\begin{equation*}
q\left(b^{\prime}, b, m, z\right)=\frac{1}{1+r} \mathbb{E}\left[\left(1-1_{\mathcal{D}}\left(b^{\prime}, g_{m}\left(b^{\prime}, b, m, z\right), z^{\prime}\right)\right)\left(\kappa+(1-\rho) q\left(b^{\prime \prime}, b^{\prime}, g_{m}\left(b^{\prime}, b, m, z\right), z^{\prime}\right)\right) \mid z\right] \tag{5}
\end{equation*}
$$

where $1_{\mathcal{D}}(b, m, z)$ denotes the government's default policy as perceived by lenders, $b^{\prime \prime}=g_{b}\left(b^{\prime}, g_{m}\left(b^{\prime}, b, m, z\right), z^{\prime}\right)$ is the expected debt issuance in the following period and $g_{m}\left(b^{\prime}, b, m, z\right)$ is the expected result of negotiations with the monopolist, to happen in the afternoon.

Bilateral loan In the afternoon of $t$, the government meets with the monopolist to negotiate the loan $m$. As before, the outcome of their negotiation is a transfer $x$ and new loan size $m^{\prime}$ which solve the following Nash bargaining problem

$$
\begin{gather*}
\max _{m^{\prime}, x} \mathcal{L}_{R}\left(b^{\prime}, x, m, m^{\prime}, z\right)^{\theta} \mathcal{B}_{R}\left(b^{\prime}, b, x, m, m^{\prime}, z\right)^{1-\theta} \\
\text { or }  \tag{6}\\
\max _{m^{\prime}, x} \mathcal{L}_{D}\left(x, m, m^{\prime}, z\right)^{\theta} \mathcal{B}_{D}\left(x, m, m^{\prime}, z\right)^{1-\theta}
\end{gather*}
$$

As before the monopolist's surplus is

$$
\begin{aligned}
\mathcal{L}_{R}\left(b^{\prime}, x, m, m^{\prime}, z\right) & =-x-m+\beta_{L} \mathbb{E}\left[h\left(b^{\prime}, m^{\prime}, z^{\prime}\right)-h\left(b^{\prime}, 0, z^{\prime}\right) \mid z\right] \\
\mathcal{L}_{D}\left(x, m, m^{\prime}, z\right) & =-x-m+\beta_{L} \mathbb{E}\left[\psi\left(h\left(0, m^{\prime}, z^{\prime}\right)-h\left(0,0, z^{\prime}\right)\right)+(1-\psi)\left(h_{D}\left(m^{\prime}, z^{\prime}\right)-h_{D}\left(0, z^{\prime}\right)\right) \mid z\right]
\end{aligned}
$$

while the borrower's surplus now also reflects outcomes in debt markets

$$
\begin{aligned}
& \mathcal{B}_{R}\left(b^{\prime}, b, x, m, m^{\prime}, z\right)=u(y(z)\left.+P\left(b^{\prime}, b, m, z\right)+x\right)-u\left(y(z)+P\left(b^{\prime}, b, m, z\right)-m\right)+ \\
& \quad+\beta \mathbb{E}\left[v\left(b^{\prime}, m^{\prime}, z^{\prime}\right)-v\left(b^{\prime}, 0, z^{\prime}\right) \mid z\right] \\
& \mathcal{B}_{D}\left(x, m, m^{\prime}, z\right)=u\left(y_{D}(z)+x\right)-u\left(y_{D}(z)-m\right)+ \\
&+\beta \mathbb{E}\left[\psi\left(v\left(0, m^{\prime}, z^{\prime}\right)-v\left(0,0, z^{\prime}\right)\right)+(1-\psi)\left(v_{D}\left(m^{\prime}, z^{\prime}\right)-v_{D}\left(0, z^{\prime}\right)\right) \mid z\right]
\end{aligned}
$$

where the function $y_{D}(z)=y(z)-\xi(z)$ is output in default and $P$ summarizes net transfers from the competitive lenders received in the morning. We assume long-term debt in the form of standard geometrically-decaying coupons which yield $P\left(b^{\prime}, b, m, z\right)=q\left(b^{\prime}, b, m, z\right)\left(b^{\prime}-(1-\rho) b\right)-\kappa b$. In default, opportunities to reaccess markets arrive with probability $\psi$. The bargaining problems yield new terms for the bilateral loan $x_{R}\left(b^{\prime}, b, m, z\right)$, $m_{R}^{\prime}\left(b^{\prime}, b, m, z\right)$ and $x_{D}(m, z), m_{D}^{\prime}(m, z)$ in default and repayment.

After the negotiation is done and transfers settled, consumption takes place. The borrower's value functions for entering negotiations are given by

$$
\begin{align*}
c_{\zeta}\left(b^{\prime}, b, m, z\right) & =y(z)+P\left(b^{\prime}, b, m, z\right)+x_{\zeta}\left(b^{\prime}, b, m, z\right) \\
w_{R}\left(b^{\prime}, b, m, z\right) & =u\left(c_{R}\left(b^{\prime}, b, m, z\right)\right)+\beta \mathbb{E}\left[v\left(b^{\prime}, m_{R}^{\prime}\left(b^{\prime}, b, m, z\right), z^{\prime}\right) \mid z\right]  \tag{7}\\
w_{D}(m, z)=v_{D}(m, z) & =u\left(c_{D}(m, z)\right)+\beta \mathbb{E}\left[\psi v\left(0, m_{D}^{\prime}(m, z), z^{\prime}\right)+(1-\psi) v_{D}\left(m_{D}^{\prime}(m, z), z^{\prime}\right) \mid z\right]
\end{align*}
$$

while for the monopolist we have

$$
\begin{align*}
h(b, m, z) & =\mathcal{P}(b, m, z) h_{D}(m, z)+(1-\mathcal{P}(b, m, z)) h_{R}\left(b^{\prime}(b, m, z), b, m, z\right) \\
h_{R}\left(b^{\prime}, b, m, z\right) & =a-x_{R}\left(b^{\prime}, b, m, z\right)+\beta_{L} \mathbb{E}\left[h\left(b^{\prime}, m_{R}^{\prime}\left(b^{\prime}, b, m, z\right), z^{\prime}\right) \mid z\right]  \tag{8}\\
h_{D}(m, z) & =a-x_{D}(m, z)+\beta_{L} \mathbb{E}\left[\psi h\left(0, m_{D}^{\prime}(m, z), z^{\prime}\right)+(1-\psi) h_{D}\left(m_{D}^{\prime}(m, z), z^{\prime}\right) \mid z\right]
\end{align*}
$$

## 4. Quantitative results

We parametrize our model at a quarterly frequency following standard strategies in the sovereign default literature (most parameters taken from the calibration to the 2001 Argentina default in Roch and Roldán, 2023). Table 1 summarizes our parametrization.

Table 1: Baseline parameter values

|  | Parameter | Value |
| :--- | :---: | :---: |
| Sovereign's discount factor | $\beta$ | 0.9852 |
| Sovereign's risk aversion | $\gamma$ | 2 |
| Preference shock scale parameter | $\chi$ | 0.025 |
| Lender's bargaining power | $\theta$ | 0.5 |
| Risk-free interest rate | $r$ | 0.01 |
| Duration of debt | $\rho$ | 0.05 |
| Income autocorrelation coefficient | $\rho_{z}$ | 0.9484 |
| Standard deviation of $y_{t}$ | $\sigma_{z}$ | 0.02 |
| Reentry probability | $\psi$ | 0.0385 |
| Default cost: linear | $d_{0}$ | -0.24 |
| Default cost: quadratic | $d_{1}$ | 0.3 |

When both debt with private competitive lenders and swaps with the monopolist are available, they are clearly substitutes. For instance, Figure 5 shows that the default probability (for bonds) is increasing in both types of indebtedness, fixing income at its mean.


Figure 5: Default probability

Figure 6 compares an economy with access to swaps but with current level $m=0$, on the left, to an economy in which the swap is not available, on the right. It shows that the availability of swaps exacerbates sovereign risk by raising the option value of default: the economy with access to swaps defaults at lower levels of debt (or higher levels of income) than the one without them.

Moreover, since the monopolist keeps a share of the surplus generated by the swap, the borrower economy is reluctant to borrow from it. In a typical simulation path, conditional on no default the amount drawn on the swap is $0.42 \%$ of annual income with a standard deviation of $0.71 \%$. Figure 7 shows that this changes significantly


Figure 6: Default probability at $m=0$ with (left) and without (right) swaps
around default events: the loan size $m$ shoots up from essentially zero as soon as the default is declared. The monopolist heavily subsidizes this accumulation of debt on the swap line. As before, the monopolist provides


Figure 7: SWaps around default events
negative interest rates in the first periods of the default event, while debt on the swap line is increasing, in order to be able to increase rates when indebtedness is high. But in this case, the gamble for debt overhang has a twist: when the economy recovers market access, it immediately issues debt on the market to pay off the swap (see Figure 12 in the Appendix). The lender is then gambling that income will not revert and that the exclusion period will be long.

While most of the use of the bilateral loan $m$ occurs during default, Figure 7 shows that default episodes are preceded by drawings on the swap in an effort to avoid or postpone default (Figure 7 does not show the defaults that were avoided as a consequence of swaps being possible).

The swap line affects the economy in two ways: on the one hand, it provides extra financing when default
risk is present and makes borrowing in private markets costly. But it also provides funds in default, which raises the value of being excluded from private markets and consequently spreads. To disentangle these effects, we consider a variant of the model in which the loan size cannot be increased while the economy is excluded from private debt markets, in other words, a variant with the extra constraint that $m_{D}^{\prime}(m, z) \leq m$.

### 4.1 Default probabilities and debt prices

Figure 8 shows ex-post default probabilities as a function of the debt level in private markets $b$, when the bilateral loan $m=0$, as a function of the lender's bargaining power $\theta$. Solid lines, corresponding to the version of the model with unrestricted bilateral loans in default, show that default is more likely when bilateral loans are available, for almost all debt levels (except for the case of all the bargaining power for the borrower). In contrast, the models in which no extra funds can be obtained from the monopolist while in default (marked Limited) all display a lower default probability.


Figure 8: Default probability

Figure 8 highlights the negative impact of the swap line. When the monopolist can provide funds during default, it makes private debt repayment less attractive. The higher default probability translates into lower prices for debt, as shown in Figure 9. However, the figure also reveals that debt prices are lower in part of the state space even when the bilateral loan is Limited. The fact that debt prices can be lower for the economy with Limited access to swaps than the one without any access while the one-period-ahead default probability is also lower means that the Limited economies accumulate more debt later on, which eventually results in a higher default probability which support the lower prices. In other words, the option of swaps, even when they are Limited, worsens the debt dilution problem and create overborrowing.


Figure 9: Debt prices

### 4.2 Welfare effects of swap lines

The forces discussed above combine to produce welfare losses of bilateral loans. Figure 10 shows the government's value function as a function of debt $b$ when the bilateral loan is 0 . Except when the government holds all the bargaining power, the 'limited' version is preferred to the unrestricted one. However, except when the bargaining power is very large, the presence of swaps actually causes welfare losses for the government, because of the worsening in debt prices discussed above.


Figure 10: Value functions

Figure 13 in the Appendix confirms this intuition about debt dilution. In particular, it shows that with shortterm debt there are welfare gains for a larger range of values of the bargaining weight parameter.

## 5. CONCLUDING REMARKS

Should drawn Central Bank swap lines be counted in public debt? We argue that swaps are a natural vehicle for sovereign borrowing when market access is limited, consistent with empirical observations over the past decade. Our model highlights the interaction between the terms of both types of debt and how the possibility of each affects the outside option (explicitly for bilateral loans and implicitly for private debt) of the other.

Our results suggest that having more sources of indebtedness can be detrimental for the borrowing government. The price of swaps can include large premia as a consequence of market power. Furthermore, while swaps could in some cases help a government fend off default, they also make it more likely by allowing borrowing during the exclusion period, effectively diminishing the output costs of default which, in most models, sustain sovereign borrowing in the first place.

## References

Arellano, C. and A. Ramanarayanan (2012): "Default and the Maturity Structure in Sovereign Bonds," Journal of Political Economy, 120, 187-232.

Bahaj, S. and R. Reis (2021): "Central Bank Swap Lines: Evidence on the Effects of the Lender of Last Resort," The Review of Economic Studies, 89, 1654-1693.

Cesa-Bianchi, A., F. Eguren-Martin, and A. Ferrero (2022): "Dollar Shortages and Central Bank Swap Lines," Mimeo.

Hatchondo, J. C. and L. Martinez (2009): "Long-duration bonds and sovereign defaults," fournal of International Economics, 79, 117-125.

Horn, S., B. C. Parks, C. M. Reinhart, and C. Trebesch (2023): "China as an International Lender of Last Resort," Working Paper 31105, National Bureau of Economic Research.

Leland, H. E. (1998): "Agency Costs, Risk Management, and Capital Structure," Journal of Finance, 53, 1213-1243.
Perks, M., Y. Rao, J. Shin, and K. Tokuoka (2021): "Evolution of Bilateral Swap Lines," IMF Working Papers 2021/210, International Monetary Fund.

Roch, F. and F. RoldÁn (2023): "Uncertainty Premia, Sovereign Default Risk, and State-Contingent Debt," Journal of Political Economy Macroeconomics, 1, 334-370.

## A. More results

Figure 11 shows that when the borrower holds all the bargaining power, the swap interest rate is constant at $\beta_{L}^{-1}$.


Figure 11: Simulated path, $\theta=0$

Figure 12 shows that, further conditioning on an exclusion period of 2 years, the economy issues debt in the market in order to pay off the swap as soon as it recovers market access.


Figure 12: Swaps around default events

Figure 13 shows that, (i) with short-term debt, allowing the swap to be drawn while in default provides welfare gains and (ii) there are welfare gains from the swap for a larger range of values of the bargaining weight, in particular for $\theta \leq 0.3$.


Figure 13: Value functions, short-term debt


[^0]:    *For thoughtful comments and suggestions we would like to thank our discussant Saleem Bahaj, Cristina Arellano, Giancarlo Corsetti, Francisco Roch, Tom Sargent, and participants at SED, Banque de France/EUI conference on Macroeconomic, Price, and Debt Stabilization, SEA, and the IMF. The views expressed herein are those of the authors and should not be attributed to the IMF, its Executive Board, or its management.
    $\dagger \mathrm{e}-\mathrm{mail}$ : froldan@imf.org
    †e-mail: csosapad@nd.edu

