Central Bank Swap Lines as Bilateral Sovereign Debt

Francisco Roldán
IMF
César Sosa-Padilla
Notre Dame
Society for Economic Dynamics
June 2023

What is a Central Bank swap?

Swaps are symmetric currency exchanges

- A swap line is a contract between two Central Banks
- When activated, each institution provides an amount of its currency to the counterparty
- At maturity, positions are unwound

What is a Central Bank swap?

Swaps are symmetric currency exchanges

- A swap line is a contract between two Central Banks
- When activated, each institution provides an amount of its currency to the counterparty
- At maturity, positions are unwound

What is a Central Bank swap?

which can be asymmetric in practice

- The Fed doesn't really want Mexico's pesos
... treats them more like collateral
- Mexican authorities may need dollars for their BoP
... more similar to borrowed reserves

What is a Central Bank swap?

Swaps are symmetric currency exchanges

- A swap line is a contract between two Central Banks
- When activated, each institution provides an amount of its currency to the counterparty
- At maturity, positions are unwound
which can be asymmetric in practice
- The Fed doesn't really want Mexico's pesos
... treats them more like collateral
- Mexican authorities may need dollars for their BoP
... more similar to borrowed reserves
- Symmetric swaps (AE-AE) potentially very different from asymmetric ones (AE-EM)

How are Central Bank Swap Lines different from Sovereign Debt?

For an EM using the swap line to borrow from an AE

Regular debt (bond markets)

- Defaultable
- Many different lenders
- Interest rate (spreads) mainly reflects default risk

Bilateral loan (swap line)

- Non-defaulteable (Central Bank)
- No coordination issues
- Can be used to curb default risk
- Interest rate?

How do Central Bank Swap Lines interact with Sovereign Debt?

Main findings

- One type of debt affects borrowing conditions for the other
- Borrowing from the market serves as threat in swap negotiations
- Swap can be used when spreads on the market are high
- Lending around or in default maximizes surplus for bilateral loans
- Without restricting swaps in default, welfare losses for government
- Swaps worsen the debt dilution problem

Literature

- Central Bank swaps among advanced economies
... Bahaj and Reis (2021); Cesa-Bianchi, Eguren-Martin, and Ferrero (2022)
- Data on Central Bank swaps
... Perks, Rao, Shin, and Tokuoka (2021); Horn, Parks, Reinhart, and Trebesch (2023)
- Sovereign debt/default with non-defaultable debt
... Hatchondo, Martinez, and Onder (2014)

Roadmap

Model with Swaps only

Model with Swaps and Debt

Quantitative Effects of Swap Lines

Concluding remarks

Model with Swaps only

Environment

The government of a small open economy borrows from a monopolist

- Income $y\left(z_{t}\right)$ follows an AR(1) process in logs
- Renegotiate the swap m each period
... Involves a transfer x and a new loan size m^{\prime}
- The swap is non-defaultable
... Repaying the whole amount is a natural threat point

Should expect

... Implicit interest rate r to vary over time
... Interest rate to reflect
... Interest rate to reflect outside options

Environment

The government of a small open economy borrows from a monopolist

- Income $y\left(z_{t}\right)$ follows an AR(1) process in logs
- Renegotiate the swap m each period
... Involves a transfer x and a new loan size m^{\prime}
- The swap is non-defaultable
... Repaying the whole amount is a natural threat point
- Should expect

$$
x=\frac{1}{1+r} m^{\prime}-m
$$

... Implicit interest rate r to vary over time
... Interest rate to reflect market power
... Interest rate to reflect outside options

Bargaining stage with monopolist

- At income state z and loan m, solve

$$
\max _{x, m^{\prime}} \mathcal{L}\left(x, m, m^{\prime}, z\right)^{\theta} \times \mathcal{B}\left(x, m, m^{\prime}, z\right)^{1-\theta}
$$

Government (borrower) surplus

agreement: receive x, owe m^{\prime}
threat point: repay m, clean slate

Lender surplus

Value functions $v(m, z)$ and $h(m, z)$ encode expected outcomes of future rounds

Bargaining stage with monopolist

- At income state z and loan m, solve

$$
\max _{x, m^{\prime}} \mathcal{L}\left(x, m, m^{\prime}, z\right)^{\theta} \times \mathcal{B}\left(x, m, m^{\prime}, z\right)^{1-\theta}
$$

- Government (borrower) surplus

$$
\mathcal{B}\left(x, m, m^{\prime}, z\right)=\underbrace{u(y(z)+x)+\beta \mathbb{E}\left[v\left(m^{\prime}, z^{\prime}\right) \mid z\right]}_{\text {agreement: receive } x, \text { owe } m^{\prime}}-\underbrace{\left(u(y(z)-m)+\beta \mathbb{E}\left[v\left(0, z^{\prime}\right) \mid z\right]\right)}_{\text {threat point: repay } m \text {, clean slate }}
$$

Lender surplus

Bargaining stage with monopolist

- At income state z and loan m, solve

$$
\max _{x, m^{\prime}} \mathcal{L}\left(x, m, m^{\prime}, z\right)^{\theta} \times \mathcal{B}\left(x, m, m^{\prime}, z\right)^{1-\theta}
$$

- Government (borrower) surplus

$$
\mathcal{B}\left(x, m, m^{\prime}, z\right)=\underbrace{u(y(z)+x)+\beta \mathbb{E}\left[v\left(m^{\prime}, z^{\prime}\right) \mid z\right]}_{\text {agreement: receive } x, \text { owe } m^{\prime}}-\underbrace{\left(u(y(z)-m)+\beta \mathbb{E}\left[v\left(0, z^{\prime}\right) \mid z\right]\right)}_{\text {threat point: repay } m \text {, clean slate }}
$$

- Lender surplus

$$
\mathcal{L}\left(x, m, m^{\prime}, z\right)=\underbrace{a-x+\beta_{L} \mathbb{E}\left[h\left(m^{\prime}, z^{\prime}\right) \mid z\right]}_{\text {agreement }}-\underbrace{\left(a+m+\beta_{L} \mathbb{E}\left[h\left(0, z^{\prime}\right) \mid z\right]\right)}_{\text {threat point }}
$$

Bargaining stage with monopolist

- At income state z and loan m, solve

$$
\max _{x, m^{\prime}} \mathcal{L}\left(x, m, m^{\prime}, z\right)^{\theta} \times \mathcal{B}\left(x, m, m^{\prime}, z\right)^{1-\theta}
$$

- Government (borrower) surplus

$$
\mathcal{B}\left(x, m, m^{\prime}, z\right)=\underbrace{u(y(z)+x)+\beta \mathbb{E}\left[v\left(m^{\prime}, z^{\prime}\right) \mid z\right]}_{\text {agreement: receive } x \text {, owe } m^{\prime}}-\underbrace{\left(u(y(z)-m)+\beta \mathbb{E}\left[v\left(0, z^{\prime}\right) \mid z\right]\right)}_{\text {threat point: repay } m \text {, clean slate }}
$$

- Lender surplus

$$
\mathcal{L}\left(x, m, m^{\prime}, z\right)=\underbrace{a-x+\beta_{L} \mathbb{E}\left[h\left(m^{\prime}, z^{\prime}\right) \mid z\right]}_{\text {agreement }}-\underbrace{\left(a+m+\beta_{L} \mathbb{E}\left[h\left(0, z^{\prime}\right) \mid z\right]\right)}_{\text {threat point }}
$$

- Value functions $v(m, z)$ and $h(m, z)$ encode expected outcomes of future rounds

Swap Line Terms: Loan Dynamics

$$
m^{\prime}(m, z)
$$

Swap Line Terms: Transfers

Swap Line Terms: Interest rate

Swap Line Terms: Borrower's value function

$$
v(m, z)
$$

Swap Line Terms: Lender's value function

Swap Line Terms: Takeaways

The threat point is less 'credible' when m is large

- This creates convexity in the lender's value function
... making the lender act 'as if' risk-loving
- The lender initially subsidizes the loan to induce indebtedness and high profits
- Gamble for debt overhang
- Initial subsidy and high rates consistent with B's risk aversion - 'Participation constraint'

Model with Swaps and Debt

Timeline of events

Borrowing from markets

- Debt is a geometrically-decaying coupon
... get 1 , pay $\kappa,(1-\rho) \kappa, \ldots(1-\rho)^{s-1} \kappa$
- Government enters first stage owing b in debt, m in swaps, income state z

$$
\begin{aligned}
v(b, m, z) & =\max \left\{v_{R}(b, m, z)+\epsilon_{R}, v_{D}(m, z)+\epsilon_{D}\right\} \\
v_{R}(b, m, z) & =\max _{b^{\prime}} w_{R}\left(b^{\prime}, b, m, z\right)
\end{aligned}
$$

Lenders in competitive markets need to anticipate interactions with the monopolist

Borrowing from markets

- Debt is a geometrically-decaying coupon

$$
\ldots \text { get } 1, \quad \text { pay } \kappa,(1-\rho) \kappa, \ldots(1-\rho)^{s-1} \kappa
$$

- Government enters first stage owing b in debt, m in swaps, income state z

$$
\begin{aligned}
v(b, m, z) & =\max \left\{v_{R}(b, m, z)+\epsilon_{R}, v_{D}(m, z)+\epsilon_{D}\right\} \\
v_{R}(b, m, z) & =\max _{b^{\prime}} w_{R}\left(b^{\prime}, b, m, z\right)
\end{aligned}
$$

- Lenders in competitive markets need to anticipate interactions with the monopolist

$$
\begin{aligned}
q\left(b^{\prime}, b, m, z\right) & =\beta_{\mathbb{L}} \mathbb{E}\left[\left(1-1_{\mathcal{D}}\left(b^{\prime}, m^{\prime}, z^{\prime}\right)\right)\left(\kappa+(1-\rho) q\left(b^{\prime \prime}, b^{\prime}, m^{\prime}, z^{\prime}\right)\right) \mid z\right] \\
m^{\prime} & =m^{\prime}\left(b^{\prime}, b, m, z\right) \\
b^{\prime \prime} & =b^{\prime}\left(b^{\prime}, m^{\prime}, z^{\prime}\right)
\end{aligned}
$$

Bargaining stage

- Similar to the case with swaps only with extra state variables $\left(b, b^{\prime}\right)$

$$
\begin{aligned}
\mathcal{L}_{R}\left(b^{\prime}, x, m, m^{\prime}, z\right) & =\left(a-x+\beta_{L} \mathbb{E}\left[h\left(b^{\prime}, m^{\prime}, z^{\prime}\right) \mid z\right]\right)-\left(a+m+\beta_{L} \mathbb{E}\left[h\left(b^{\prime}, 0, z^{\prime}\right) \mid z\right]\right) \\
\mathcal{B}_{R}\left(b^{\prime}, b, x, m, m^{\prime}, z\right) & =u\left(y(z)+B\left(b^{\prime}, b, m, z\right)+x\right)+\beta \mathbb{E}\left[v\left(b^{\prime}, m^{\prime}, z^{\prime}\right) \mid z\right] \\
& -\left(u\left(y(z)+B\left(b^{\prime}, b, m, z\right)-m\right)+\beta \mathbb{E}\left[v\left(b^{\prime}, 0, z^{\prime}\right) \mid z\right]\right) \\
B\left(b^{\prime}, b, m, z\right) & =q\left(b^{\prime}, b, m, z\right)\left(b^{\prime}-(1-\rho) b\right)-\kappa b
\end{aligned}
$$

Quantitative Effects of Swap Lines

Default probability

Both types of debt are clearly substitutes
Default Probability $\mathcal{P}(b, m, z)$

When is the Swap Used?

- In repayment, average swap = 0.42\% of GDP with s.d. 0.71%
- In default,

Swaps around default events

When is the Swap Used?

- In repayment, average swap $=0.42 \%$ of GDP with s.d. 0.71%
- In default,

Swaps around default events

When is the Swap Used?

- In repayment, average swap $=0.42 \%$ of GDP with s.d. 0.71%
- In default,

Swaps around default events

- Also consider Limited version: $m^{\prime} \leq m$ while in default

Debt Tolerance with Swaps

More repayment with Limited and with bargaining power
Default Probability $\mathcal{P}(b, m, z)$

Debt Tolerance with Swaps

More repayment with Limited and with bargaining power
Default Probability $\mathcal{P}(b, m, z)$

Debt Prices with Swaps

Limited: more repayment but lower prices - Tell-tale sign of debt dilution (+ more debt)

$$
\text { Debt Price } q(b, b, m, z)
$$

Welfare effects of swap lines

with interior bargaining power, Limited \succcurlyeq Unrestricted, but...

$$
v(b, m, z)
$$

Welfare effects of swap lines - Debt dilution

Solving model with short-term debt: gains of swaps

Concluding remarks

Concluding remarks

- Simple model with monopolist/fringe structure
- Strong interaction between two markets for sovereign debt
... even if swaps are not used intensely on the equilibrium path
- Market power crucial in model
... how to discipline in model?
... how to affect in reality?
- Large welfare effects, policy challenges
- How to limit their use during defaults?
- Strengthen debt dilution - more gains from fiscal rules, state-contingent debt?

When is the Swap Used?

- Further conditioning on default events lasting exactly two years

Swaps around default events

