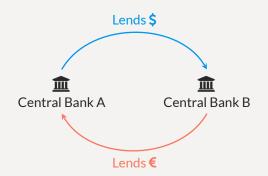
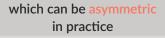
Central Bank Swap Lines as Bilateral Sovereign Debt


Francisco Roldán IMF César Sosa-Padilla Notre Dame

April 2024

The views expressed herein are those of the authors and should not be attributed to the IMF, its Executive Board, or its management.


Swaps are symmetric currency exchanges


- A swap line is a contract between two Central Banks
- When activated, each institution provides an amount of its currency to the counterparty
- · At maturity, positions are unwound

• Symmetric swaps (AE-AE) potentially very different from asymmetric ones (AE-EM) Symmetric swaps better understood, growing number of *asymmetric* ones

What is a Central Bank swap?

- The Fed doesn't really want Mexico's pesos
 - ... treats them more like collateral
- Mexican authorities may need dollars for their BoP
 ... more similar to borrowed reserves
- Symmetric swaps (AE-AE) potentially very different from asymmetric ones (AE-EM) Symmetric swaps better understood, growing number of *asymmetric* ones

Swaps are symmetric currency exchanges

- A swap line is a contract between two Central Banks
- When activated, each institution provides an amount of its currency to the counterparty
- · At maturity, positions are unwound

which can be asymmetric in practice

- The Fed doesn't really want Mexico's pesos
 - ... treats them more like collateral
- Mexican authorities may need dollars for their BoP
 ... more similar to borrowed reserves
- Symmetric swaps (AE-AE) potentially very different from asymmetric ones (AE-EM)

... Symmetric swaps better understood, growing number of asymmetric ones

How are Central Bank Swap Lines different from Sovereign Debt?

· We abstract from currencies, collateral, and focus on the borrowing

For an EM using the swap line to borrow from an AE

Regular debt (bond markets)

- · Defaultable
- Many different lenders
- Interest rate (spreads) mainly reflects
 default risk

Bilateral loan (swap line)

- Non-defaulteable (Central Bank)
- No coordination issues
- · Can be used to curb default risk
- Interest rate?

How are Central Bank Swap Lines different from Sovereign Debt?

 $\cdot\,$ We abstract from currencies, collateral, and focus on the borrowing

For an EM using the swap line to borrow from an AE

Regular debt (bond markets)

- Defaultable
- · Many different lenders
- Interest rate (spreads) mainly reflects default risk

Bilateral loan (swap line)

- · Non-defaulteable (Central Bank)
- No coordination issues
- · Can be used to curb default risk
- Interest rate?

How do Central Bank Swap Lines interact with Sovereign Debt?

Main findings

- · One type of debt affects borrowing conditions for the other
 - · Borrowing from the market serves as threat in swap negotiations
 - $\cdot\,$ Swap can be used when spreads on the market are high
- · Lending around or in default maximizes surplus for bilateral loans
 - · Availability of swaps in default:
 - ... raises the value of default
 - ... which increases the default frequency
 - ... and worsens borrowing terms in bond markets
 - Without restricting swaps in default, welfare losses for the government
- $\cdot \,$ Swap lines create incentives similar to the debt dilution problem
 - Surplus requires spreads spreads require risk

· Central Bank swaps among advanced economies

... Bahaj and Reis (2021); Cesa-Bianchi, Eguren-Martin, and Ferrero (2022)

· Data on Central Bank swaps for EMs

... Perks, Rao, Shin, and Tokuoka (2021); Horn, Parks, Reinhart, and Trebesch (2023)

· Sovereign debt/default with interactions from 'official' debt

... Boz (2011), Hatchondo, Martinez, and Onder (2014), Arellano and Barreto (2023)

Model with Swaps only

Environment

The government of a small open economy borrows from a monopolist

- · Income $y(z_t)$ follows an AR(1) process in logs
 - ... Only one good, representative risk-averse household, expected utility
- Renegotiate the swap *m* each period
 - ... Involves a transfer \mathbf{x} and a new loan size \mathbf{m}'
 - ... Swap is non-defaultable \implies Repaying *m* is the natural threat point
- · Should expect

- $\Rightarrow x = \frac{1}{1+r}m' m$
- ... Implicit interest rate r to vary over time
- ... Interest rate to reflect market power
- ... Interest rate to reflect outside options

Environment

The government of a small open economy borrows from a monopolist

- · Income $y(z_t)$ follows an AR(1) process in logs
 - ... Only one good, representative risk-averse household, expected utility
- Renegotiate the swap *m* each period
 - ... Involves a transfer x and a new loan size m'
 - ... Swap is non-defaultable \implies Repaying *m* is the natural threat point
- $\cdot \,$ Should expect

$$x = \frac{1}{1+r}m' - r$$

- ... Implicit interest rate r to vary over time
- ... Interest rate to reflect market power
- ... Interest rate to reflect outside options

- At income state z and loan m, solve $\max_{x,m'} \mathcal{L}(x,m,m',z)^{\theta} \times \mathcal{B}(x,m,m',z)^{1-\theta}$ Lender surplus
 - · Government (borrower) surplus

$$\mathcal{B}(\mathbf{x}, m, m', z) = \underbrace{u(\mathbf{y}(z) + \mathbf{x}) + \beta \mathbb{E}\left[v(m', z') \mid z\right]}_{\mathbf{z}} - \underbrace{\left(u(\mathbf{y}(z) - m) + \beta \mathbb{E}\left[v(\mathbf{0}, z') \mid z\right]\right)}_{\mathbf{z}}$$

agreement: receive x, owe m'

threat point: repay m, clean slate

Lender surplus

$$\mathcal{L}(x,m,m',z) = \underbrace{a - x + \beta_L \mathbb{E}\left[h(m',z') \mid z\right]}_{\text{agreement}} - \underbrace{\left(a + m + \beta_L \mathbb{E}\left[h(0,z') \mid z\right]\right)}_{\text{threat point}}$$

• At income state z and loan m, solve

$$\max_{x,m'} \mathcal{L}(x,m,m',z)^{\theta} \times \mathcal{B}(x,m,m',z)^{1-\theta}$$

· Government (borrower) surplus

$$\mathcal{B}(\mathbf{x},\mathbf{m},\mathbf{m}',\mathbf{z}) = \underbrace{u(\mathbf{y}(\mathbf{z}) + \mathbf{x}) + \beta \mathbb{E}\left[v(\mathbf{m}',\mathbf{z}') \mid \mathbf{z}\right]}_{\mathbf{z}} - \underbrace{(u(\mathbf{y}(\mathbf{z}) - \mathbf{m}) + \beta \mathbb{E}\left[v(\mathbf{0},\mathbf{z}') \mid \mathbf{z}\right])}_{\mathbf{z}}$$

agreement: receive x, owe m'

threat point: repay m, clean slate

· Lender surplus

$$\mathcal{L}(x, m, m', z) = \underbrace{a - x + \beta_L \mathbb{E}\left[h(m', z') \mid z\right]}_{\text{agreement}} - \underbrace{\left(a + m + \beta_L \mathbb{E}\left[h(0, z') \mid z\right]\right)}_{\text{threat point}}$$

• At income state z and loan m, solve

$$\max_{x,m'} \mathcal{L}(x,m,m',z)^{\theta} \times \mathcal{B}(x,m,m',z)^{1-\theta}$$

· Government (borrower) surplus

$$\mathcal{B}(\mathbf{x}, \mathbf{m}, \mathbf{m}', \mathbf{z}) = \underbrace{u(\mathbf{y}(\mathbf{z}) + \mathbf{x}) + \beta \mathbb{E}\left[v(\mathbf{m}', \mathbf{z}') \mid \mathbf{z}\right]}_{(\mathbf{u}(\mathbf{y}(\mathbf{z}) - \mathbf{m}) + \beta \mathbb{E}\left[v(\mathbf{0}, \mathbf{z}') \mid \mathbf{z}\right])}$$

agreement: receive x, owe m'

threat point: repay m, clean slate

• Lender surplus

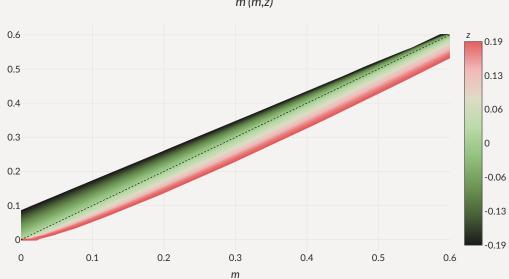
$$\mathcal{L}(\mathbf{x}, \mathbf{m}, \mathbf{m}', \mathbf{z}) = \underbrace{a - \mathbf{x} + \beta_{L} \mathbb{E}\left[h(\mathbf{m}', \mathbf{z}') \mid \mathbf{z}\right]}_{\text{agreement}} - \underbrace{\left(a + \mathbf{m} + \beta_{L} \mathbb{E}\left[h(\mathbf{0}, \mathbf{z}') \mid \mathbf{z}\right]\right)}_{\text{threat point}}$$

• At income state z and loan m, solve

$$\max_{x,m'} \mathcal{L}(x,m,m',z)^{\theta} \times \mathcal{B}(x,m,m',z)^{1-\theta}$$

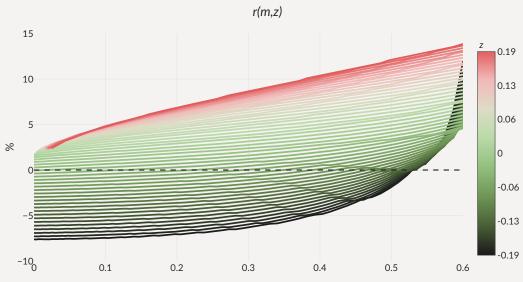
· Government (borrower) surplus

$$\mathcal{B}(x,m,m',z) = \underbrace{u(y(z)+x) + \beta \mathbb{E}\left[v(m',z') \mid z\right]}_{(u(y(z)-m)+\beta \mathbb{E}\left[v(0,z') \mid z\right])}$$

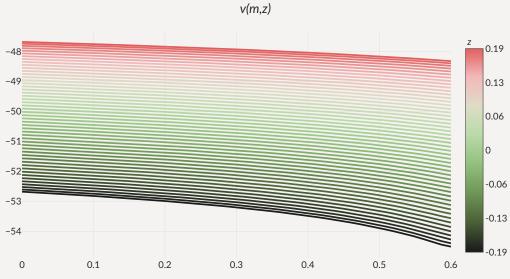

agreement: receive x, owe m'

threat point: repay m, clean slate

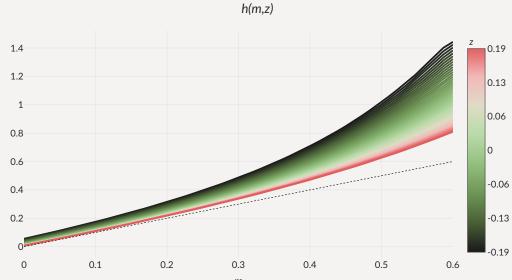
• Lender surplus


$$\mathcal{L}(\mathbf{x}, m, m', \mathbf{z}) = \underbrace{a - \mathbf{x} + \beta_{L} \mathbb{E}\left[h(m', \mathbf{z}') \mid \mathbf{z}\right]}_{\text{agreement}} - \underbrace{\left(a + m + \beta_{L} \mathbb{E}\left[h(0, \mathbf{z}') \mid \mathbf{z}\right]\right)}_{\text{threat point}}$$

Swap Line Terms: Loan Dynamics


m'(m,z)

Swap Line Terms: Implicit interest rate


т

Swap Line Terms: Borrower's value function

т

Swap Line Terms: Lender's value function

т

key requirement: threat point value decreasing in m

The threat point is less 'credible' when \dot{m} is large

- $\cdot \,$ This creates convexity in the lender's value function
 - ... making the lender act 'as if' risk-loving
- $\cdot\,$ The lender initially subsidizes the loan to induce indebtedness and high profits
 - Gamble for debt overhang
- $\cdot~$ Initial subsidy and high rates consistent with B's risk aversion 'Participation constraint'

Model with Swaps and Debt

Period t starts			Period t ends
Priv	vate debt markets	Monopolist	
Default c	hoice Debt Issuance	Bargaining	Consumption $z' \sim F(\cdot \mid z)$
(b, m, z)	(b', b	, m, z) (b', b, x	(b', m', z) (b', m', z)

- $\cdot \,$ Debt is a geometrically-decaying coupon
 - ... for each unit, get q, pay κ , $(1 \rho)\kappa$, ... $(1 \rho)^{s-1}\kappa$
- Government enters first stage owing b in debt, m in swaps, income state z

$$v(b, m, z) = \max \left\{ v_R(b, m, z) + \epsilon_R, v_D(m, z) + \epsilon_D \right\}$$
$$v_R(b, m, z) = \max_{b'} w_R(b', b, m, z)$$

· Lenders in competitive markets need to anticipate interactions with the monopolist

$$q(b', b, m, z) = \beta_L \mathbb{E} \left[(1 - 1_D(b', m', z')) (\kappa + (1 - \rho)q(b'', b', m', z')) \mid z \right]$$

$$m' = m'(b', b, m, z)$$

$$b'' = b'(b', m', z')$$

- $\cdot \,$ Debt is a geometrically-decaying coupon
 - ... for each unit, get q, pay κ , $(1 \rho)\kappa$, ... $(1 \rho)^{s-1}\kappa$
- Government enters first stage owing b in debt, m in swaps, income state z

$$v(b, m, z) = \max \left\{ v_R(b, m, z) + \epsilon_R, v_D(m, z) + \epsilon_D \right\}$$
$$v_R(b, m, z) = \max_{b'} w_R(b', b, m, z)$$

· Lenders in competitive markets need to anticipate interactions with the monopolist

$$\begin{aligned} q(b', b, m, z) &= \beta_{\mathsf{L}} \mathbb{E} \left[(1 - \mathbf{1}_{\mathcal{D}}(b', m', z')) \left(\kappa + (1 - \rho)q(b'', b', m', z') \right) \mid z \right] \\ m' &= m'(b', b, m, z) \\ b'' &= b'(b', m', z') \end{aligned}$$

- $\cdot\,$ Debt is a geometrically-decaying coupon
 - ... for each unit, get q, pay κ , $(1 \rho)\kappa$, ... $(1 \rho)^{s-1}\kappa$
- Government enters first stage owing b in debt, m in swaps, income state z

$$v(b, m, z) = \max \left\{ v_R(b, m, z) + \epsilon_R, v_D(m, z) + \epsilon_D \right\}$$
$$v_R(b, m, z) = \max_{b'} w_R(b', b, m, z)$$

· Lenders in competitive markets need to anticipate interactions with the monopolist

$$\begin{aligned} q(b',b,m,z) &= \beta_{L} \mathbb{E} \left[(1 - 1_{\mathcal{D}}(b',m',z')) \left(\kappa + (1 - \rho)q(b'',b',m',z') \right) \mid z \right] \\ m' &= m \left(b,m,z \right) \\ b'' &= b'(b',m',z') \end{aligned}$$
 same sdf as monopolist

• Same as before with extra state variables (b, b')

 $\mathcal{L}_{\mathsf{R}}(\mathbf{b}', \mathbf{x}, \mathbf{m}, \mathbf{m}', \mathbf{z}) = (\mathbf{a} - \mathbf{x} + \beta_{\mathsf{L}} \mathbb{E} \left[\mathbf{h}(\mathbf{b}', \mathbf{m}', \mathbf{z}') \mid \mathbf{z} \right]) - (\mathbf{a} + \mathbf{m} + \beta_{\mathsf{L}} \mathbb{E} \left[\mathbf{h}(\mathbf{b}', \mathbf{0}, \mathbf{z}') \mid \mathbf{z} \right])$

$$\begin{aligned} \mathcal{B}_{\mathsf{R}}(b',b,x,m,m',z) &= u\big(y(z) + \mathsf{B}(b',b,m,z) + x\big) + \beta \mathbb{E}\left[v(b',m',z') \mid z\right] \\ &- \big(u\big(y(z) + \mathsf{B}(b',b,m,z) - m\big) + \beta \mathbb{E}\left[v(b',0,z') \mid z\right]\big) \end{aligned}$$

 $B(\mathbf{b}',\mathbf{b},m,z) = q(\mathbf{b}',\mathbf{b},m,z)(\mathbf{b}'-(1-\rho)\mathbf{b}) - \kappa \mathbf{b}$

· In default,

$$\mathsf{v}_{D}(m,z) = \mathsf{u}\left(\mathsf{y}(z) - \underbrace{\phi(\mathsf{y}(z))}_{\mathsf{default\,cost}} + \underbrace{\mathsf{x}_{D}(m,z)}_{\mathsf{swap\,transfer}}\right) + \beta \mathbb{E}\left[\psi\mathsf{v}(0,m'_{D},z') + (1-\psi)\mathsf{v}_{D}(m'_{D},z') \mid z\right]$$

- Negotiate $x_D(m, z)$ and $m'_D(m, z)$ with common knowledge of default status
- Bargaining in default not disciplined by market
 - ... similar to model with monopolist only
 - ... extra dimension of gambling for delayed reentry

· In default,

$$\mathsf{v}_{D}(m,z) = \mathsf{u}\left(\mathsf{y}(z) - \underbrace{\phi(\mathsf{y}(z))}_{\mathsf{default\,cost}} + \underbrace{\mathsf{x}_{D}(m,z)}_{\mathsf{swap\,transfer}}\right) + \beta \mathbb{E}\left[\psi\mathsf{v}(0,m'_{D},z') + (1-\psi)\mathsf{v}_{D}(m'_{D},z') \mid z\right]$$

- Negotiate $x_D(m, z)$ and $m'_D(m, z)$ with common knowledge of default status
- · Bargaining in default not disciplined by market
 - ... similar to model with monopolist only
 - ... extra dimension of gambling for delayed reentry

Quantitative Effects of Swap Lines

Calibration

• Calibrate to Argentina without swaps (as in Roch & Roldán, 2023)

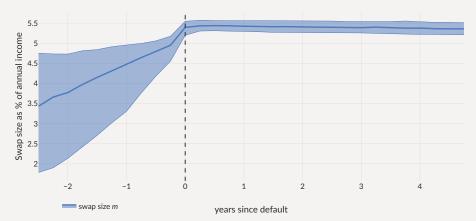
	Parameter	Value
Sovereign's discount factor	β	0.9504
Sovereign's risk aversion	γ	2
Preference shock scale parameter	χ	0.02
Lender's bargaining power	θ	0.5
Risk-free interest rate	r	0.01
Duration of debt	ρ	0.05
Income autocorrelation coefficient	ρ_{z}	0.9484
Standard deviation of y_t	σ_{z}	0.02
Reentry probability	ψ	0.0385
Default cost: linear	d_0	-0.24
Default cost: quadratic	d_1	0.3

Calibration

· Calibrate to Argentina without swaps (as in Roch & Roldán, 2023)

	Parameter	Value
Sovereign's discount factor	β	0.9504
Sovereign's risk aversion	γ	2
Preference shock scale parameter	χ	0.02
Lender's bargaining power	θ	0.5
Risk-free interest rate	r	0.01
Duration of debt	ρ	0.05
Income autocorrelation coefficient	ρ_{z}	0.9484
Standard deviation of y_t	σ_{z}	0.02
Reentry probability	ψ	0.0385
Default cost: linear	d_0	-0.24
Default cost: quadratic	d_1	0.3

Calibration

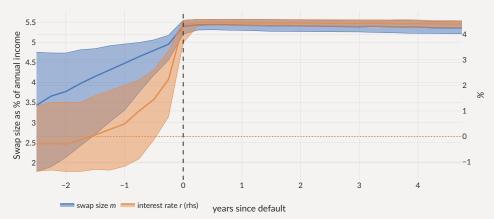

• Calibrate to Argentina without swaps (as in Roch & Roldán, 2023)

	Parameter	Value
Sovereign's discount factor	β	0.9504
Sovereign's risk aversion	γ	2
Preference shock scale parameter	χ	0.02
Lender's bargaining power	θ	0.5
Risk-free interest rate	r	0.01
Duration of debt	ρ	0.05
Income autocorrelation coefficient	ρ_{z}	0.9484
Standard deviation of y_t	σ_{z}	0.02
Reentry probability	ψ	0.0385
Default cost: linear	d_0	-0.24
Default cost: quadratic	d_1	0.3

	No swap	Unrestricted, $\theta = 0.25$	Unrestricted, $\theta = 0.5$
Avg spread (bps)	901	1899	2447
Std spread (bps)	532	1137	1578
$\sigma(c)/\sigma(y)$ (%)	110	110	110
Debt to GDP (%)	20.5	20.2	19.6
Swap to GDP (%)	0	3.68	3.25
Corr. swap & spreads (%)	-	55.4	62.6
Default frequency (%)	7.07	13.2	15.2
Welfare gains (rep)	-	-0.059%	-0.36%

· Swaps shoot up before and during defaults

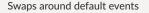
Swaps around default events



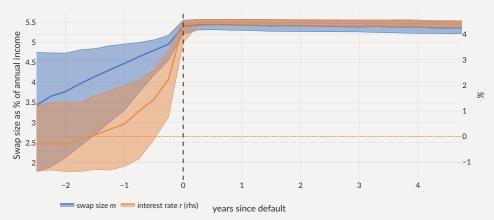
• Also consider Limited versions: $m' \leq \Gamma(m)$ while in default

Limited
More

· Swaps shoot up before and during defaults



• Also consider Limited versions: $m' \leq \Gamma(m)$ while in default


Limited More

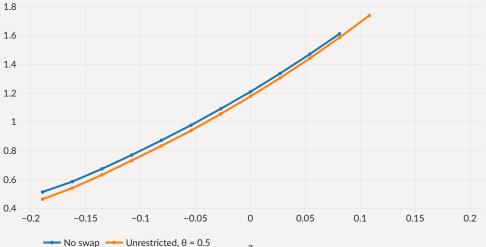
· Swaps shoot up before and during defaults

Limited

Mon

• Also consider Limited versions: $m' \leq \Gamma(m)$ while in default

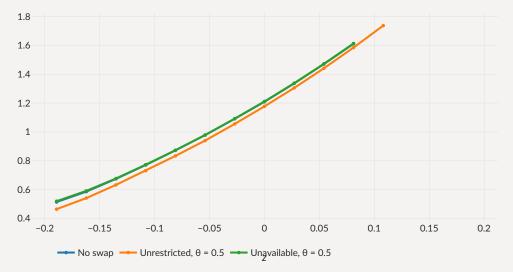
Limiting swaps in default


• Unavailable: entire swap must be repaid while in default $\Gamma(m) = 0$

	No swap	Unrestricted, $\theta = 0.5$	Unavailable, $\theta = 0.5$
Avg spread (bps)	901	2447	1406
Std spread (bps)	532	1578	960
$\sigma(c)/\sigma(y)$ (%)	110	110	114
Debt to GDP (%)	20.5	19.6	20.5
Swap to GDP (%)	0	3.25	1.27
Corr. swap & spreads (%)	-	62.6	70.1
Default frequency (%)	7.07	15.2	10.7
Welfare gains (rep)	-	-0.36%	-0.22%

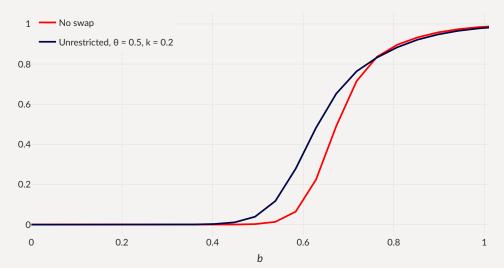
Default Barriers with Swaps

Unrestricted: default barrier moves inward, Limited: marginal impact


Debt levels at which $\mathcal{P}(b,m,z)$ crosses 50%

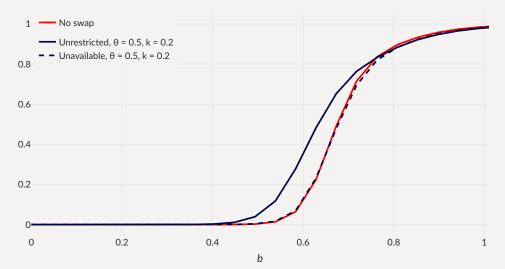
Default Barriers with Swaps

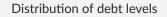
Unrestricted: default barrier moves inward, Limited: marginal impact

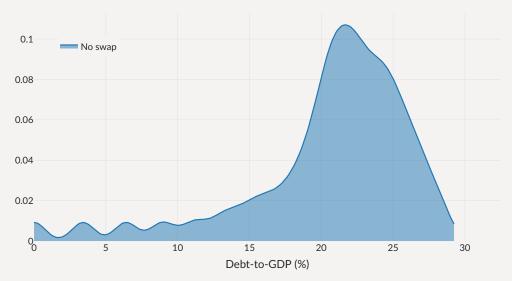

Debt levels at which $\mathcal{P}(b,m,z)$ crosses 50%

Debt Tolerance with Swaps

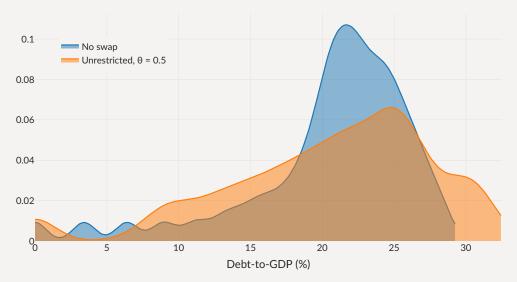
Repay less often with swaps. More often with Limited

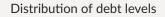

Default Probability *P*(*b*,*m*,*z*)

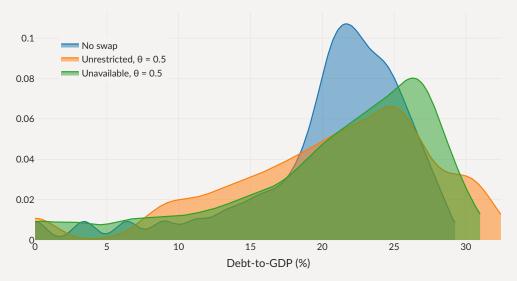


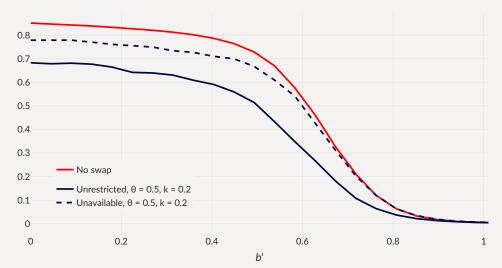

Debt Tolerance with Swaps

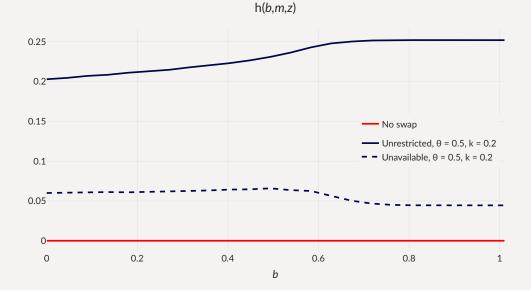

Repay less often with swaps. More often with Limited


Default Probability P(b,m,z)



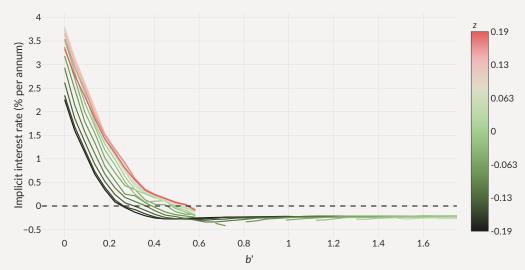





Debt Prices with Swaps

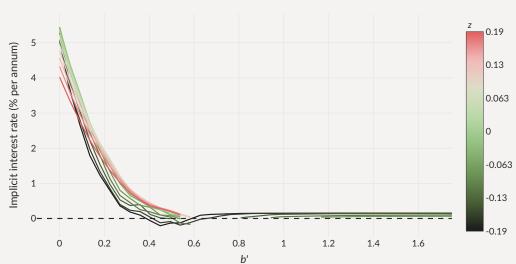
Limited: more likely to repay but lower prices \longrightarrow Tell-tale sign of debt dilution?

Debt Price q(b',b,m,z)



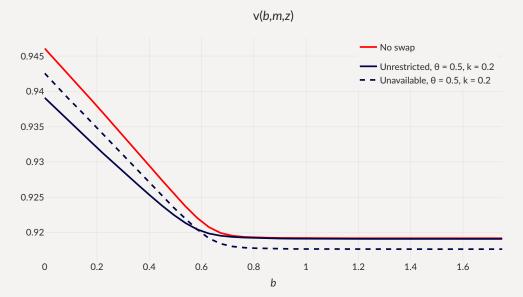
Monopolist's profits increasing in debt (cond. on repayment) – surplus requires spreads > 0

Risk-taking incentives

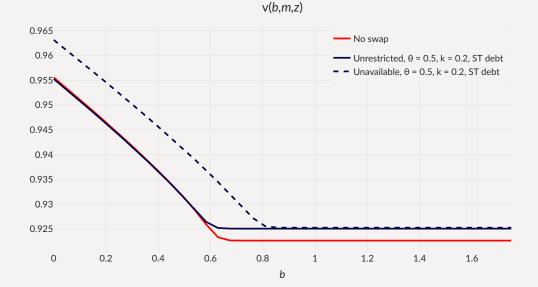

Surplus on swap requires spreads > 0: monopolist provides incentives for risk taking

Interest rate on the swap (Unrestricted)

Risk-taking incentives

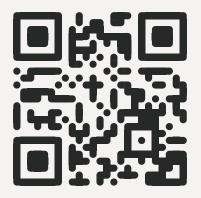

Surplus on swap requires spreads > 0: monopolist provides incentives for risk taking

Interest rate on the swap (Unavailable)

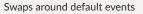

Welfare effects of swap lines

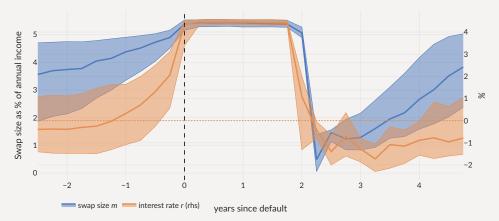
Limited \geq Unrestricted, but...

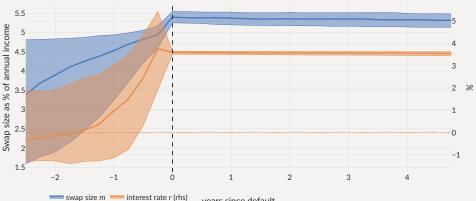
Welfare effects of swap lines - Short-term debt


Short-term debt: swaps beneficial - interest on the swap small wrt to whole debt stock

	No swap, ST	Unrestricted, $\theta = 0.5$, ST	Unavailable, $\theta = 0.5$, ST
Avg spread (bps)	80.7	377	247
Std spread (bps)	110	373	197
$\sigma(\mathbf{c})/\sigma(\mathbf{y})$ (%)	129	130	138
Debt to GDP (%)	19.0	18.7	23.5
Swap to GDP (%)	0	3.13	3.65
Corr. swap & spreads (%)	-	54.9	50.3
Default frequency (%)	0.574	3.14	1.97
Welfare gains (rep)	-	-0.074%	0.8%


Concluding remarks


- Simple model with monopolist/fringe structure
- · Strong interaction between two markets for sovereign debt
 - ... even if swaps are not used intensely on the equilibrium path
- · Market power crucial in model
 - ... how to discipline in model?
 - ... how to affect in reality?
- · Large welfare effects, policy challenges
 - · How to limit their use during defaults?
 - · Strengthened debt dilution more gains from fiscal rules, state-contingent debt?


Scan to find the paper

 $\cdot\;$ Further conditioning on default events lasting exactly two years

• With Limited: $\Gamma(m) = m$

Swaps around default events

years since default