Uncertainty Premia, Sovereign Default Risk, and State-Contingent Debt

Francisco Roch IMF Francisco Roldán IMF

January 2023

The views expressed herein are those of the authors and should not be attributed to the IMF, its Executive Board, or its management.

State-contingent debt instruments

- · Decrease default risk
- · Reduce cyclicality of fiscal policy
- · Improve risk-sharing

Why aren't they used?

State-contingent debt instruments

- · Decrease default risk
- · Reduce cyclicality of fiscal policy
- · Improve risk-sharing

Why aren't they used?

Unfavorable prices of state-contingent instruments

- · These instruments are heavily discounted by markets
 - · Costa, Chamon, and Ricci (2008) compute wide spreads for Argentine GDP-warrants
 - $\cdot\ \sim$ 300-400bps from default risk of other securities
 - · 600-1200bps residual: 'novelty' premium

This paper proposes a framework that

- Rationalizes pricing of SCI + welfare analysis
 - With ingredients from resolutions of the equity premium puzzle
 - Robustness (Hansen and Sargent, 2001; Pouzo and Presno, 2016)
- · Links unfavorable prices to common 'threshold' structure
 - Example: Argentina's GDP-warrants, also Ukraine, Greece. . .

Unfavorable prices of state-contingent instruments

- · These instruments are heavily discounted by markets
 - · Costa, Chamon, and Ricci (2008) compute wide spreads for Argentine GDP-warrants
 - $\cdot\ \sim$ 300-400bps from default risk of other securities
 - · 600-1200bps residual: 'novelty' premium

This paper proposes a framework that

- Rationalizes pricing of SCI + welfare analysis
 - With ingredients from resolutions of the equity premium puzzle
 - Robustness (Hansen and Sargent, 2001; Pouzo and Presno, 2016)
- · Links unfavorable prices to common 'threshold' structure
 - Example: Argentina's GDP-warrants, also Ukraine, Greece...

▶ More

1. Robust lenders dislike repayment structures with thresholds in good times

· Heavy discounts for these bonds \implies welfare losses

2. Explain most of the 'novelty premium' in Argentina's GDP warrants as ambiguity premia

· Calibration of robustness from noncontingent debt only

3. Characterize the optimal design and how it changes with robustness

• With high robustness, want to minimize ex-ante and ex-post contingency

 \cdot Stylized Model

- \cdot Probability Distortions
- \cdot Quantitative Implementation
- \cdot Concluding Remarks

Stylized Model

We consider a simple two-period model, small open economy

- Uncertain endowment y(z) in the second period
- The government has access to one asset which promises a return R(z).
- · A few benchmarks

Noncontingent debt		1
		$1 + \alpha(y(z) - 1)$

We consider a simple two-period model, small open economy

- Uncertain endowment y(z) in the second period
- The government has access to one asset which promises a return R(z).
- · A few benchmarks

Noncontingent debt	R(z)	=	1
Linear indexing	$R^{\alpha}(z)$	=	$1 + \alpha(y(z) - 1)$
Threshold debt	$R^{\tau}(z)$	=	$\mathbb{1}(z > \tau)$
Optimal design	$R^{\star}(z;\theta)$	cho	sen state-by-state

• The government takes as given the price schedule q(b)

$$\begin{aligned} \max_{b} u(c_{1}^{b}) + \beta_{b} \mathbb{E} \left[u(c_{2}^{b}) \right] \\ \text{subject to } c_{1}^{b} = y_{1} + q(b)b \\ c_{2}^{b} = y_{2}(z) - h(z, \Delta)d(b, z) - (1 - d(b, z))R(z)b \end{aligned}$$

where

$$h(z, \Delta) = y_2(z)^2 \Delta$$

Foreign lenders are less standard and have multiplier preferences

$$\max c_1^L + \beta \frac{1}{-\theta} \log \mathbb{E} \left[\exp(-v_2^L) \right]$$

subject to $v_2^L = c_2^L$
 $c_2^L = w_2 + (1 - d(b, z))R(z)b$
 $c_1^L = w_1 - q_1b$

$$q(b; R) = \beta \mathbb{E} \left[\frac{\exp(-\theta v_2^L)}{\mathbb{E} \left[\exp(-\theta v_2^L) \right]} (1 - d(b, z)) R(z) \right]$$
$$= \underbrace{\beta \mathbb{E} \left[(1 - d) R \right]}_{= q_{RE}} + \underbrace{(1 - \mathbb{P}(d)) \operatorname{cov}(\beta M, R)}_{= q_0^{\text{cent}}} - \underbrace{\mathbb{E} \left[R \right] \operatorname{cov}(\beta M, d)}_{= -q_0^{\text{def}}}$$

Foreign lenders are less standard and have multiplier preferences

$$\begin{aligned} \max c_1^L + \beta \frac{1}{-\theta} \log \mathbb{E} \left[\exp(-\theta v_2^L) \right] \\ \text{subject to } v_2^L &= c_2^L \\ c_2^L &= w_2 + (1 - d(b, z)) R(z) b \\ c_1^L &= w_1 - q_1 b \end{aligned}$$

$$q(b; R) = \beta \mathbb{E} \left[\frac{\exp(-\theta v_2^L)}{\mathbb{E} \left[\exp(-\theta v_2^L) \right]} (1 - d(b, z)) R(z) \right]$$
$$= \underbrace{\beta \mathbb{E} \left[(1 - d) R \right]}_{= q_{RE}} + \underbrace{(1 - \mathbb{P}(d)) \operatorname{cov}(\beta M, R)}_{= q_0^{\text{cent}}} - \underbrace{\mathbb{E} \left[R \right] \operatorname{cov}(\beta M, d)}_{= -q_0^{\text{def}}}$$

Foreign lenders are less standard and have multiplier preferences

$$\begin{aligned} \max c_1^L + \beta \frac{1}{-\theta} \log \mathbb{E} \left[\exp(-\theta v_2^L) \right] \\ \text{subject to } v_2^L &= c_2^L \\ c_2^L &= w_2 + (1 - d(b, z)) R(z) b \\ c_1^L &= w_1 - q_1 b \end{aligned}$$

$$q(b; R) = \beta \mathbb{E} \left[\frac{\exp(-\theta v_2^L)}{\mathbb{E} \left[\exp(-\theta v_2^L) \right]} (1 - d(b, z)) R(z) \right]$$
$$= \underbrace{\beta \mathbb{E} \left[(1 - d) R \right]}_{= q_{RE}} + \underbrace{(1 - \mathbb{P}(d)) \operatorname{cov}(\beta M, R)}_{= q_0^{\text{cent}}} - \underbrace{\mathbb{E} \left[R \right] \operatorname{cov}(\beta M, d)}_{= -q_0^{\text{def}}}$$

Foreign lenders are less standard and have multiplier preferences

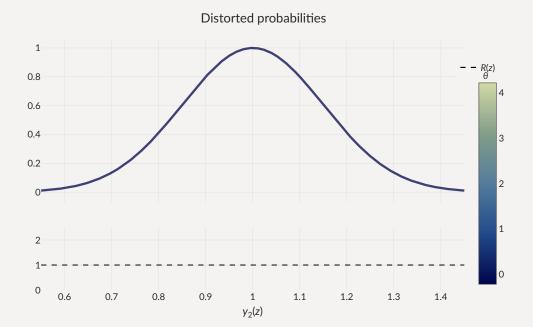
$$\begin{aligned} \max c_1^L + \beta \frac{1}{-\theta} \log \mathbb{E} \left[\exp(-\theta v_2^L) \right] \\ \text{subject to } v_2^L &= c_2^L \\ c_2^L &= w_2 + (1 - d(b, z)) R(z) b \\ c_1^L &= w_1 - q_1 b \end{aligned}$$

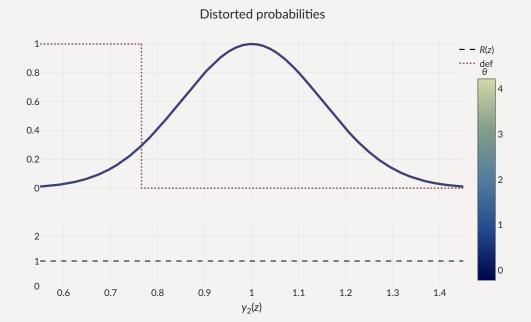
$$q(b; R) = \beta \mathbb{E} \left[\frac{\exp(-\theta v_2^L)}{\mathbb{E} \left[\exp(-\theta v_2^L) \right]} (1 - d(b, z)) R(z) \right]$$
$$= \underbrace{\beta \mathbb{E} \left[(1 - d)R \right]}_{= q_{RE}} + \underbrace{(1 - \mathbb{P}(d)) \operatorname{cov}(\beta M, R)}_{= q_e^{\text{cont}}} - \underbrace{\mathbb{E} \left[R \right] \operatorname{cov}(\beta M, d)}_{= -q_e^{\text{def}}}$$

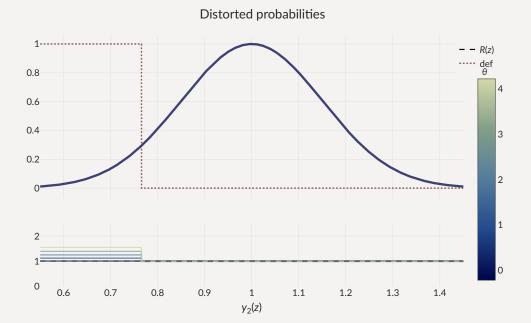
Foreign lenders are less standard and have multiplier preferences

$$\begin{aligned} \max c_1^L + \beta \frac{1}{-\theta} \log \mathbb{E} \left[\exp(-\theta v_2^L) \right] \\ \text{subject to } v_2^L &= c_2^L \\ c_2^L &= w_2 + (1 - d(b, z)) R(z) b \\ c_1^L &= w_1 - q_1 b \end{aligned}$$

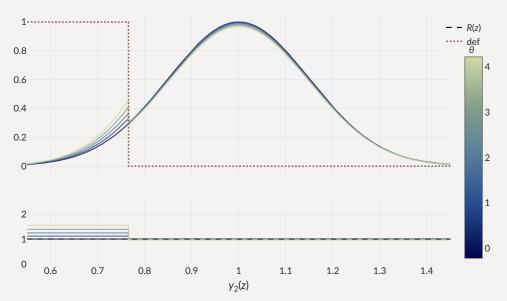
$$q(b; R) = \beta \mathbb{E} \left[\frac{\exp(-\theta v_2^L)}{\mathbb{E} \left[\exp(-\theta v_2^L) \right]} (1 - d(b, z)) R(z) \right]$$
$$= \underbrace{\beta \mathbb{E} \left[(1 - d)R \right]}_{= q_{RE}} + \underbrace{(1 - \mathbb{P}(d)) \operatorname{cov}(\beta M, R)}_{= q_{\theta}^{\text{cont}}} - \underbrace{\mathbb{E} \left[R \right] \operatorname{cov}(\beta M, d)}_{= -q_{\theta}^{\text{def}}}$$

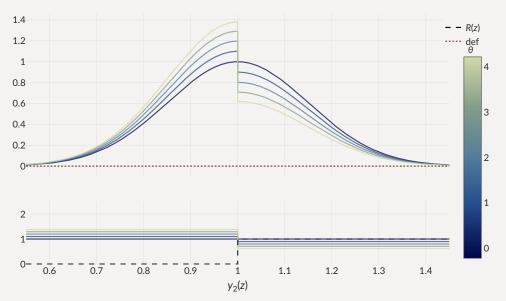

Foreign lenders are less standard and have multiplier preferences

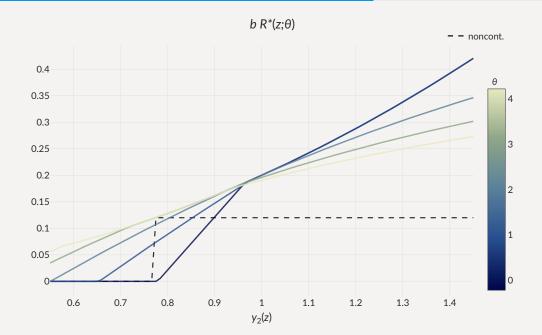

$$\begin{aligned} \max c_1^L + \beta \frac{1}{-\theta} \log \mathbb{E} \left[\exp(-\theta v_2^L) \right] \\ \text{subject to } v_2^L &= c_2^L \\ c_2^L &= w_2 + (1 - d(b, z)) R(z) b \\ c_1^L &= w_1 - q_1 b \end{aligned}$$


$$q(b; R) = \beta \mathbb{E} \left[\frac{\exp(-\theta v_2^L)}{\mathbb{E} \left[\exp(-\theta v_2^L) \right]} (1 - d(b, z)) R(z) \right]$$
$$= \underbrace{\beta \mathbb{E} \left[(1 - d)R \right]}_{= q_{RE}} + \underbrace{(1 - \mathbb{P}(d)) \operatorname{cov}(\beta M, R)}_{= q_{\theta}^{\operatorname{cont}}} - \underbrace{\mathbb{E} \left[R \right] \operatorname{cov}(\beta M, d)}_{= -q_{\theta}^{\operatorname{def}}}$$

Probability Distortions


Distorted probabilities - noncontingent debt





Quantitative Implementation

- · Infinite horizon, small-open economy
- Robust lenders as before
- · Long-term debt, debt issued at t pays coupon at t + s

$$\max\left\{0,(1-\delta)^{s-1}(1+\alpha(y_s-1))\mathbb{1}(y_s>\tau)\right\}$$

- Noncontingent debt: $\alpha = 0, \tau = -\infty$
- \cdot Default triggers exclusion + output costs for a random amount of periods \sim Geo (ψ)

	Rational Expectations			Benchmark ($ heta=2.15$)		
Statistic	Noncontingent	Threshold	$\alpha = 1$	Noncontingent	Threshold	$\alpha = 1$
Spread (bps)	893	318	742	842	1636	746
o/w Spread RE	893	318	742	432	2.6	343
Std Spread	439	133	301	376	238	282
Debt-to-GDP (%)	18.3	32.8	17.8	16.7	18.3	17.5
Std(c)/Std(y)	1.4	0.9	1.4	1.3	0.84	1.3
Default Prob (%)	6.0	1.7	5.6	3.2	0.01	2.7
Welfare Gains	-	0.94%	0.22%	-	-1.1%	0.15%
DEP	-	-	-	40.1%	31.4%	39%

	Rational Expectations			Benchmark ($\theta = 2.15$)		
Statistic	Noncontingent	Threshold	$\alpha = 1$	Noncontingent	Threshold	$\alpha = 1$
Spread (bps)	893	318	742	842	1636	746
o/w Spread RE	893	318	742	432	2.6	343
Std Spread	439	133	301	376	238	282
Debt-to-GDP (%)	18.3	32.8	17.8	16.7	18.3	17.5
Std(c)/Std(y)	1.4	0.9	1.4	1.3	0.84	1.3
Default Prob (%)	6.0	1.7	5.6	3.2	0.01	2.7
Welfare Gains	-	0.94%	0.22%	-	-1.1%	0.15%
DEP	-	-	-	40.1%	31.4%	39%

	Rational Expectations			Benchmark ($\theta = 2.15$)		
Statistic	Noncontingent	Threshold	$\alpha = 1$	Noncontingent	Threshold	$\alpha = 1$
Spread (bps)	893	318	742	842	1636	746
o/w Spread RE	893	318	742	432	2.6	343
Std Spread	439	133	301	376	238	282
Debt-to-GDP (%)	18.3	32.8	17.8	16.7	18.3	17.5
Std(c)/Std(y)	1.4	0.9	1.4	1.3	0.84	1.3
Default Prob (%)	6.0	1.7	5.6	3.2	0.01	2.7
Welfare Gains	-	0.94%	0.22%	-	-1.1%	0.15%
DEP	-	-	-	40.1%	31.4%	39%

	Rational Expectations			Benchmark ($\theta = 2.15$)		
Statistic	Noncontingent	Threshold	$\alpha = 1$	Noncontingent	Threshold	$\alpha = 1$
Spread (bps)	893	318	742	842	1636	746
o/w Spread RE	893	318	742	432	2.6	343
Std Spread	439	133	301	376	238	282
Debt-to-GDP (%)	18.3	32.8	17.8	16.7	18.3	17.5
Std(c)/Std(y)	1.4	0.9	1.4	1.3	0.84	1.3
Default Prob (%)	6.0	1.7	5.6	3.2	0.01	2.7
Welfare Gains	-	0.94%	0.22%	-	-1.1%	0.15%
DEP	-	-	-	40.1%	31.4%	39%

	Rational Expectations			Benchmark ($\theta = 2.15$)		
Statistic	Noncontingent	Threshold	$\alpha = 1$	Noncontingent	Threshold	$\alpha = 1$
Spread (bps)	893	318	742	842	1636	746
o/w Spread RE	893	318	742	432	2.6	343
Std Spread	439	133	301	376	238	282
Debt-to-GDP (%)	18.3	32.8	17.8	16.7	18.3	17.5
Std(c)/Std(y)	1.4	0.9	1.4	1.3	0.84	1.3
Default Prob (%)	6.0	1.7	5.6	3.2	0.01	2.7
Welfare Gains	-	0.94%	0.22%	-	-1.1%	0.15%
DEP	-	-	-	40.1%	31.4%	39%

	Rational Expectations			Benchmark ($\theta = 2.15$)		
Statistic	Noncontingent	Threshold	$\alpha = 1$	Noncontingent	Threshold	$\alpha = 1$
Spread (bps)	893	318	742	842	1636	746
o/w Spread RE	893	318	742	432	2.6	343
Std Spread	439	133	301	376	238	282
Debt-to-GDP (%)	18.3	32.8	17.8	16.7	18.3	17.5
Std(c)/Std(y)	1.4	0.9	1.4	1.3	0.84	1.3
Default Prob (%)	6.0	1.7	5.6	3.2	0.01	2.7
Welfare Gains	-	0.94%	0.22%	-	-1.1%	0.15%
DEP	-	-	-	40.1%	31.4%	39%

	Rational Expectations			Benchmark ($ heta=2.15$)		
Statistic	Noncontingent	Threshold	$\alpha = 1$	Noncontingent	Threshold	$\alpha = 1$
Spread (bps)	893	318	742	842	1636	746
o/w Spread RE	893	318	742	432	2.6	343
Std Spread	439	133	301	376	238	282
Debt-to-GDP (%)	18.3	32.8	17.8	16.7	18.3	17.5
Std(c)/Std(y)	1.4	0.9	1.4	1.3	0.84	1.3
Default Prob (%)	6.0	1.7	5.6	3.2	0.01	2.7
Welfare Gains	-	0.94%	0.22%	-	-1.1%	0.15%
DEP	-	-	-	40.1%	31.4%	39%

	Rational Expectations		Benchma	rk ($ heta=$ 2.15)
Statistic	Noncontingent	$\alpha = 5.5, \tau = 0.904$	Noncontingent	$\alpha = 2.5, \tau = 0.879$
Spread (bps)	893	298	842	590
o/w Spread RE	893	298	432	205
Std Spread	439	69	376	119
Debt-to-GDP (%)	18.3	23.3	16.7	19.8
Std(c)/Std(y)	1.4	0.84	1.3	1.1
Default Prob (%)	6.0	2.5	3.2	1.9
Welfare Gains	-	1.6%	-	0.47%
DEP	-	-	40.1%	38.7%

Design

	Rational I	Expectations	hs Benchmark ($\theta = 2.15$)		
Statistic	Noncontingent	$\alpha = 5.5, \tau = 0.904$	Noncontingent	$\alpha = 2.5, \tau = 0.879$	
Spread (bps)	893	298	842	590	
o/w Spread RE	893	298	432	205	
Std Spread	439	69	376	119	
Debt-to-GDP (%)	18.3	23.3	16.7	19.8	
Std(c)/Std(y)	1.4	0.84	1.3	1.1	
Default Prob (%)	6.0	2.5	3.2	1.9	
Welfare Gains	-	1.6%	-	0.47%	
DEP	-	-	40.1%	38.7%	

	Rational I	Expectations	Benchma	rk ($ heta=$ 2.15)
Statistic	Noncontingent	$\alpha = 5.5, \tau = 0.904$	Noncontingent	$\alpha = 2.5, \tau = 0.879$
Spread (bps)	893	298	842	590
o/w Spread RE	893	298	432	205
Std Spread	439	69	376	119
Debt-to-GDP (%)	18.3	23.3	16.7	19.8
Std(c)/Std(y)	1.4	0.84	1.3	1.1
Default Prob (%)	6.0	2.5	3.2	1.9
Welfare Gains	-	1.6%	-	0.47%
DEP	-	-	40.1%	38.7%

	Rational Expectations		Benchmark ($\theta = 2.15$)	
Statistic	Noncontingent	$\alpha = 5.5, \tau = 0.904$	Noncontingent	$\alpha = 2.5, \tau = 0.879$
Spread (bps)	893	298	842	590
o/w Spread RE	893	298	432	205
Std Spread	439	69	376	119
Debt-to-GDP (%)	18.3	23.3	16.7	19.8
Std(c)/Std(y)	1.4	0.84	1.3	1.1
Default Prob (%)	6.0	2.5	3.2	1.9
Welfare Gains	-	1.6%	-	0.47%
DEP	-	-	40.1%	38.7%

Design

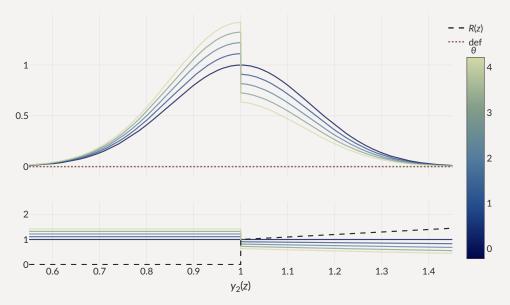
In reality issuances of state-contingent bonds are small

- $\cdot\,$ Solve the model with noncontingent debt
- Take the lenders' SDF from that equilibrium
- $\cdot \,$ Use it to price another bond

	Noncontingent bond	Linear bond	Threshold bond	Optimal bond
Benchmark	842	845	947	829
Rational Expectations	893	849	367	634

In reality issuances of state-contingent bonds are small

- $\cdot\,$ Solve the model with noncontingent debt
- Take the lenders' SDF from that equilibrium
- $\cdot \,$ Use it to price another bond


	Noncontingent bond	Linear bond	Threshold bond	Optimal bond
Benchmark	842	845	947	829
Rational Expectations	893	849	367	634

Concluding Remarks

- · Standard sovereign debt model augmented with robust lenders
 - 1. Accounts for spreads on typical threshold SCDIs
 - 2. Rationalizes part of the 'novelty' premium as a premium for ambiguity
 - 3. Links unfavorable prices to common threshold structure
 - 4. Welfare gains of SCDI decreasing in robustness
 - · Both for given instrument and for optimally-designed debt
- \cdot Optimal design
 - $\cdot\,$ With realistic robustness, lower thresholds and flatter indexation than RE
 - · With extreme robustness, eliminate contingency ex-ante (stipulated) and ex-post (default)
 - · In general, tradeoff between contingency and risk-sharing

Distorted probabilities - threshold+linear debt

Distorted probabilities

CARA

Euler equations of a rational-expectations agent with CARA preferences and access to a risk-free bond

$$q = \beta \mathbb{E} \left[\frac{u'(c_2)}{u'(c_1)} R \right] = \beta \mathbb{E} \left[\frac{\exp(-\gamma c_2)}{\exp(-\gamma c_1)} R \right]$$
$$\frac{1}{1+r} = \beta \mathbb{E} \left[\frac{u'(c_2)}{u'(c_1)} \right]$$

hence

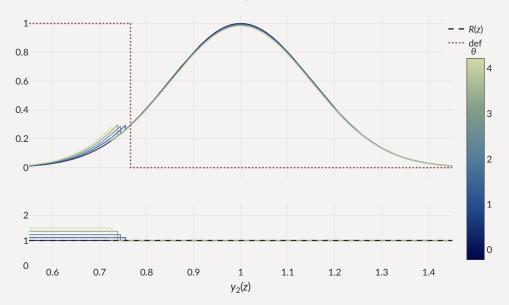
$$q = \beta \mathbb{E}\left[\frac{\exp(-\gamma c_2)}{\beta(1+r)\mathbb{E}\left[\exp(-\gamma c_2)\right]}R\right]$$

Same as robustness in two periods, in general the robust sdf is

$$q = \beta \mathbb{E}\left[\frac{\exp(-\theta \mathbf{v}')}{\mathbb{E}\left[\exp(-\theta \mathbf{v}')\right]}R\right]$$

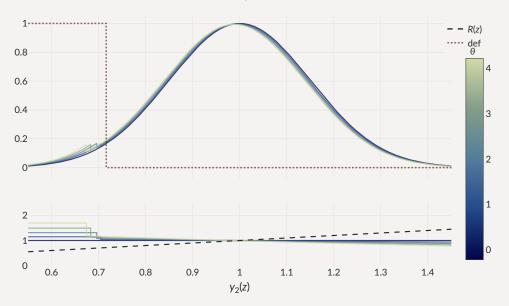
Multiplier preferences

In general,

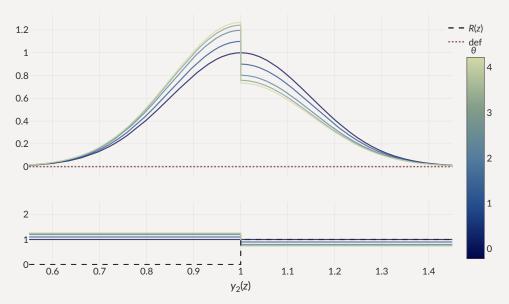

$$\min_{\tilde{p}} \max_{c} u(c) + \beta \int v(a')dp + \frac{1}{\theta} \operatorname{ent}(p, \tilde{p})$$

turns into

$$\max_{c} u(c) - \frac{\beta}{\theta} \log \left(\mathbb{E} \left[\exp(-\theta v(a')) \right] \right)$$

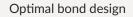

Distorted probabilities - noncontingent debt

Distorted probabilities


Distorted probabilities - linearly indexed debt

Distorted probabilities

Distorted probabilities - threshold debt


Distorted probabilities

Parametrization

We represent this bond with threshold debt, one period = five years, and

Parameter	Target	Value
β_{b}	Borrower's discount rate	6% ann.
β	Risk-free rate	3% ann.
γ	Borrower's risk aversion	2
Δ	Output cost of default	20%
g	Expected growth rate	8% ann.
k	Threshold for repayment	50%

Decomposition of spreads

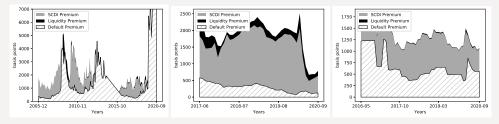


Figure 1: GDP-linked security premia.

The figure shows the estimated spread decomposition in Igan and Kim (2021) for the GDP-warrants issued by Argentina (left), Greece (middle) and Ukraine (right).