Credibility Dynamics and Disinflation Plans

Rumen Kostadinov
McMaster

Francisco Roldán
IMF

June 2020

The views expressed herein are those of the authors and should not be attributed to the IMF, its Executive Board, or its management.
Motivation

• Macro models: *expectations* of future policy determine current outcomes
• Policy typically set assuming *commitment* or *discretion*

• Governments actively attempt to influence beliefs about future policy
 • Forward guidance, inflation targets, fiscal rules

• This paper: rational-expectations theory of government credibility
 • Insights from reputation literature
 • Application in a (modern) Barro-Gordon setup
Motivation

• Macro models: expectations of future policy determine current outcomes
• Policy typically set assuming commitment or discretion
• Governments actively attempt to influence beliefs about future policy
 • Forward guidance, inflation targets, fiscal rules
• This paper: rational-expectations theory of government credibility
 • Insights from reputation literature
 • Application in a (modern) Barro-Gordon setup
Outline

- What is reputation?
 - Private sector posterior belief that the government is committed to a particular plan
 - Given a plan — [Continuation equilibrium]
 - Larger departures are easier to detect
 - Crucial feature: noise partially masks government’s current choice
 - ‘More time-inconsistent’ plans have a more negative average drift of reputation

- Planner anticipates credibility dynamics of plans — [Equilibrium]
- Consider the limit when initial reputation vanishes to zero
• What is reputation?
 • Private sector posterior belief that the government is committed to a particular plan

• Given a plan — [Continuation equilibrium]
 • Larger departures are easier to detect
 • Crucial feature: noise partially masks government’s current choice
 • ‘More time-inconsistent’ plans have a more negative average drift of reputation

• Planner anticipates credibility dynamics of plans — [Equilibrium]
 • Consider the limit when initial reputation vanishes to zero
• What is reputation?
 • Private sector *posterior belief* that the government is committed to a *particular* plan

• Given a plan — [Continuation equilibrium]
 • Larger departures are easier to detect
 • Crucial feature: noise partially masks government’s current choice
 • ‘More time-inconsistent’ plans have a more negative average drift of reputation

• Planner anticipates credibility dynamics of plans — [Equilibrium]
• Consider the limit when initial reputation vanishes to zero
Outline

- What is reputation?
 - Private sector posterior belief that the government is committed to a particular plan
- Given a plan — [Continuation equilibrium]
- Planner anticipates credibility dynamics of plans — [Equilibrium]

<table>
<thead>
<tr>
<th>Main result</th>
</tr>
</thead>
</table>
| Planner chooses a back-loaded plan | - In application, gradual disinflation
- No real inertia, but good for incentives |

- Consider the limit when initial reputation vanishes to zero
Our want operator

- Goodfriend and King (2005) describe the Volcker disinflation
Literature

• **Sustainable plans** – anything goes

• **Reputation without noise** – zero inflation at onset
 Dovis and Kirpalani (2019) – constant but more than zero

• **Reputation with noise**
 Static plans: Faingold and Sannikov (2011)

• **Preference uncertainty with noise** – announcements irrelevant
 Cukierman and Meltzer (1986), Faust and Svensson (2001), Phelan (2006), etc
Roadmap

- Model
- Continuation equilibria conditional on a plan
- Plans
- Discussion
- Conclusion
Model
Framework

- A government dislikes inflation and output away from a target $y^* > 0$

\[L_t = \mathbb{E}_t \left[\sum_{s=0}^{\infty} \beta^s \left((y^* - y_{t+s})^2 + \gamma \pi_{t+s}^2 \right) \right] \]

- A Phillips curve relates output to current and expected future inflation

\[\pi_t = \kappa y_t + \beta \mathbb{E}_t [\pi_{t+1}] \]

- The government controls inflation only imperfectly (through g_t)

\[\pi_t = g_t + \epsilon_t \]

with $\epsilon_t \sim F_\epsilon$
Reputation

• The government can be rational or one of many ‘behavioral’ types
 • Behavioral types $c \in C$
 • Type c is committed to an inflation plan $\{a_t\}_{t=0}^{\infty}$
 • For simplicity let all plans have $a_{t+1} = \phi_c(a_t)$ [Finding the state is an art]

• Behavioral types have (total) probability z
 • Conditional on behavioral, probability ν over C

• Private sector knows z and ν
 • Does inference over the government’s type
 • Uses announcement and inflation choices
Reputation

- The government can be rational or one of many ‘behavioral’ types
 - Behavioral types $c \in C$
 - Type c is committed to an inflation plan $\{a_t\}_{t=0}^\infty$
 - For simplicity let all plans have $a_{t+1} = \phi_c(a_t)$ [Finding the state is an art]

- Behavioral types have (total) probability π
 - Conditional on behavioral, probability ν over C

- Private sector knows π and ν
 - Does inference over the government’s type
 - Uses announcement and inflation choices
Behavioral types

- What is the set \(C \)?
 - and associated possible \(\phi_c \) functions
- Consider \(\{a_t\}_t \) paths characterized by
 - Starting point \(a_0 \)
 - Decay rate \(\omega \)
 - Asymptote \(\chi \)

\[
a_t = \chi + (a_0 - \chi)e^{-\omega t}
\]

\[
\phi(a) = \chi + e^{-\omega}(a - \chi)
\]
Behavioral types

- What is the set \mathcal{C}?
 - and associated possible ϕ_c functions
- Consider $\{a_t\}_t$ paths characterized by
 - Starting point a_0
 - Decay rate ω
 - Asymptote χ

\[
a_t = \chi + (a_0 - \chi)e^{-\omega t}
\]
\[
\phi(a) = \chi + e^{-\omega}(a - \chi)
\]
Gameplay

- At $t = 0$, inflation targets are announced
 - Type $c \in C$ says c
 - Rational type strategizes
 announces r possibly $\in C$
- At time $t \geq 0$, the government sets inflation
 - Behavioral type $c \in C$
 implements $g_t = a_t^c$
 - Rational type acts strategically
 chooses $g_t \leq a_t^c$
Gameplay

- At $t = 0$, inflation targets are announced
 - Type $c \in C$ says c
 - Rational type strategizes
 announces r possibly $\in C$
- At time $t \geq 0$, the government sets inflation
 - Behavioral type $c \in C$
 implements $g_t = a^c_t$
 - Rational type acts strategically
 chooses $g_t \leq a^c_t$
Gameplay

• At $t = 0$, inflation targets are announced
 • Type $c \in C$ says c
 • Rational type strategizes
 announces r possibly $\in C$

• At time $t \geq 0$, the government sets inflation
 • Behavioral type $c \in C$
 implements $g_t = a_t^c$
 • Rational type acts strategically
 chooses $g_t \preceq a_t^c$
Continuation equilibria conditional on a plan
Reputation and Outcomes

- Output is determined by beliefs $\mathbb{E}_t [\pi_{t+1}]$ and actual inflation $\pi_t = g_t + \epsilon_t$

 $$\pi_t = \kappa y_t + \beta \mathbb{E}_t [\pi_{t+1}] = \kappa y_t + \beta \mathbb{E}_t [\mathbb{1}_c a_{t+1}^c + (1 - \mathbb{1}_c)g_{t+1}^*]$$

- Private sector solves a signal extraction problem to update beliefs

 $$\mathbb{P} (c \mid \pi_t, \mathcal{F}_{t-1}) = \frac{\mathbb{P} (c \mid \mathcal{F}_{t-1}) \cdot f_\epsilon (\epsilon_t | c)}{\mathbb{P} (c \mid \mathcal{F}_{t-1}) \cdot f_\epsilon (\epsilon_t | c) + (1 - \mathbb{P} (c \mid \mathcal{F}_{t-1})) \cdot f_\epsilon (\epsilon_t | r)}$$
Reputation and Outcomes

- Output is determined by beliefs $\mathbb{E}_t [\pi_{t+1}]$ and actual inflation $\pi_t = g_t + \epsilon_t$

$$\pi_t = \kappa y_t + \beta \mathbb{E}_t [\pi_{t+1}] = \kappa y_t + \beta \mathbb{E}_t [\mathbb{1}_c q^c_{t+1} + (1 - \mathbb{1}_c) g^*_{t+1}]$$

- Private sector solves a signal extraction problem to update beliefs

$$\mathbb{P}(c \mid \pi_t, \mathcal{F}_{t-1}) = \frac{\mathbb{P}(c \mid \mathcal{F}_{t-1}) \cdot f_\epsilon(\pi_t - q^c_t)}{\mathbb{P}(c \mid \mathcal{F}_{t-1}) \cdot f_\epsilon(\pi_t - q^c_t) + (1 - \mathbb{P}(c \mid \mathcal{F}_{t-1})) \cdot f_\epsilon(\pi_t - g^*_t)}$$
Given an announcement c,

- The problem of the rational type is, given expectations g^*_c

$$
L^c(p, a) = \min_g \mathbb{E} \left[(y^* - y)^2 + \gamma \pi^2 + \beta L^c(p', \phi_c(a)) \right]
$$
subject to

$$
\pi = g + \epsilon
$$
$$
\pi = \kappa y + \beta \left[p' \phi_c(a) + (1 - p')g^*_c(p', \phi_c(a)) \right]
$$
$$
p' = p + p(1 - p) \frac{f_\epsilon(\pi - a) - f_\epsilon(\pi - g^*_c(p, a))}{pf_\epsilon(\pi - a) + (1 - p)f_\epsilon(\pi - g^*_c(p, a))}
$$

- Rational expectations requires g^*_c to be the policy associated with L^c
Continuation Equilibrium

Definition
Given an announcement c, a continuation equilibrium is a pair (\mathcal{L}^c, g^*_c) such that

- \mathcal{L}^c is the rational type’s value function at expectations g^*_c
- g^*_c is the policy function associated with \mathcal{L}^c
A First Look at Different Plans

Observation

• Plans $c \in C$ are

$$c = (a_0, \chi, \omega)$$

• For $a, b \in \mathbb{R}$

$$(\mathcal{L}, g^*)$$ is a continuation equilibrium for (a, χ, ω) if and only if $$(\mathcal{L}, g^*)$$ is a continuation equilibrium for (b, χ, ω)

• Means $a \mapsto \mathcal{L}^c(p, a)$ compares the same plan at different times and different plans
The Value Function

\[L \]

- \(L \) decreasing in \(p \)
- \(L \) convex-concave in \(p \)
- \(L \) increasing in \(a \) for large \(p \) only
Lemma 1

In any continuation equilibrium,

\[E_t [p_{t+1} \mid \text{rational}] \leq p_t \]

So \(\{p_t\}_t \) is a supermartingale
Incentives

From the Phillips curve

\[
\frac{\partial y}{\partial \pi} = \frac{1}{\kappa} \left[1 - \beta \frac{\partial p'}{\partial \pi} \left(\phi_c(a) - g^*(p', \phi_c(a)) \right) + (1 - p') \frac{\partial g^*(p', \phi_c(a))}{\partial p'} \right]
\]

• More inflation
 1. Increases output by \(\frac{1}{\kappa} \)
 2. Shifts inflation expectations from \(\phi_c(a) \) towards \(g^*(p', \phi_c(a)) \)

 \(\ldots \quad p' \) decreases with higher \(\pi \) when \(g^*(p, a) > a \)
 3. Shifts expectations of the rational type’s future choice
Incentives

From the Phillips curve

\[\frac{\partial y}{\partial \pi} = \frac{1}{\kappa} \left[1 - \beta \frac{\partial p'}{\partial \pi} \left(\phi_c(a) - g^*(p', \phi_c(a)) + (1 - p') \frac{\partial g^*(p', \phi_c(a))}{\partial p'} \right) \right] \]

· More inflation
 1. Increases output by \(\frac{1}{\kappa} \)
 2. Shifts inflation expectations from \(\phi_c(a) \) towards \(g^*(p', \phi_c(a)) \)

 \(\ldots \) \(p' \) decreases with higher \(\pi \) when \(g^*(p, a) > a \)
 3. Shifts expectations of the rational type’s future choice
Incentives

From the Phillips curve

\[
\frac{\partial y}{\partial \pi} = \frac{1}{\kappa} \left[1 - \beta \frac{\partial p'}{\partial \pi} \left(\phi_c(a) - g^*(p', \phi_c(a)) + (1 - p') \frac{\partial g^*(p', \phi_c(a))}{\partial p'} \right) \right]
\]

- More inflation
 1. Increases output by \(\frac{1}{\kappa}\)
 2. Shifts inflation expectations from \(\phi_c(a)\) towards \(g^*(p', \phi_c(a))\)
 - \(p'\) decreases with higher \(\pi\) when \(g^*(p, a) > a\)
 3. Shifts expectations of the rational type’s future choice
Incentives

From the Phillips curve

\[\frac{\partial y}{\partial \pi} = \frac{1}{\kappa} \left[1 - \beta \frac{\partial p'}{\partial \pi} \left(\phi_c(a) - g^*(p', \phi_c(a)) \right) + (1 - p') \frac{\partial g^*(p', \phi_c(a))}{\partial p'} \right] \]

- More inflation
 1. Increases output by \(\frac{1}{\kappa} \)
 2. Shifts inflation expectations from \(\phi_c(a) \) towards \(g^*(p', \phi_c(a)) \)

 \(\ldots \) \(p' \) decreases with higher \(\pi \) when \(g^*(p, a) > a \)
 3. Shifts expectations of the rational type’s future choice
Phillips curves

\[\pi = \kappa y + k_1 \]
\[\pi = \kappa y + k_2 \]
\[\pi = \kappa y + k_3 \]

- Without reputation:
 \[\text{if } \beta \mathbb{E} [\pi'] = k_j \]
 choose point on \(j \)th PC

- If announced \(a \)
 and in eq’m
 \[g^*(p, a) = a \]
 \[\implies \text{get flat PC} \]

- If \(g^*(p, a) > a \)
 \[\implies \frac{\partial p'}{\partial \pi} \text{ matters} \]
Phillips curves

\[\pi = \kappa y + k_1 \]
\[\pi = \kappa y + k_2 \]
\[\pi = \kappa y + k_3 \]

- Without reputation:
 if \(\beta \mathbb{E}[\pi'] = k_j \)
 choose point on \(j \)th PC

- If announced \(a \)
 and in eq’m
 \(g^*(p, a) = a \)
 \(\implies \) get flat PC

- If \(g^*(p, a) > a \)
 \(\implies \frac{\partial p'}{\partial \pi} \) matters
Phillips curves

\[\pi = \kappa y + \beta \mathbb{E} [\pi'] \]

- Without reputation:
 if \(\beta \mathbb{E} [\pi'] = k_j \)
 choose point on \(j \)th PC

- If announced \(a \)
 and in eq'm
 \(g^*(p, a) = a \)
 \(\implies \) get flat PC

- If \(g^*(p, a) > a \)
 \(\implies \frac{\partial p'}{\partial \pi} \) matters
Conjecture

• Let π^N be the Nash equilibrium inflation of the stage game. Then

$$\forall c \in \mathcal{C} : \quad g^*_c(p, a) \leq \pi^N$$

• Define the remaining credibility of a plan as

$$C_c(p, a) = (1 - \beta) \frac{\pi^N - g^*_c(p, a)}{\pi^N - a} + \beta \mathbb{E} [C_c(p'_c(p, a), \phi_c(a))]$$
Plans
\[
\lim_{p \to 0} C(p, a^*, \omega, \chi)
\]
Plans

- For each \(c \in C \), find \(\mathcal{L}^c(p, a), g^*_c(p, a) \).
- Generates big matrix \(\mathcal{L}(p, a; \omega, \chi) \).
- First pass: preferred plan at each \(p \).
• For each $c \in \mathcal{C}$, find $\mathcal{L}_c^c(p, a), g^*_c(p, a)$.

• Generates big matrix $\mathcal{L}(p, a; \omega, \chi)$

• First pass: preferred plan at each p
What plan to choose?

Back to the initial announcement: two notions

• If in equilibrium gov’t announces type c with density $\mu(c)$,

$$p_0(c; z, \mu) = \frac{z\nu(c)}{z\nu(c) + (1 - z)\mu(c)}$$

• So study

$$\lim_{z \to 0} \min_{\mu} \int L(p_0(a_0, \omega, \chi; z, \mu), a_0, \omega, \chi) d\mu$$

• Kambe (1999): gov’t announces type c and becomes committed to c with exogenous p_0 probability
 • Tractable: p_0 independent of c
 • So the limit we consider is

$$\lim_{p_0 \to 0} \min_{a_0, \omega, \chi} L(p_0, a_0, \omega, \chi)$$

• Not entirely arbitrary
 • For given p_0, plans that minimize L should be played often
What plan to choose?

Back to the initial announcement: two notions

- If in equilibrium gov’t announces type c with density $\mu(c)$,

$$p_0(c; z, \mu) = \frac{z \nu(c)}{z \nu(c) + (1 - z) \mu(c)}$$

- So study

$$\lim_{z \to 0} \min_{\mu} \int \mathcal{L}(p_0(a_0, \omega, \chi; z, \mu), a_0, \omega, \chi) d\mu$$

- Kambe (1999): gov’t announces type c and becomes committed to c with exogenous p_0 probability

 - Tractable: p_0 independent of c

 - So the limit we consider is

 $$\lim_{p_0 \to 0} \min_{a_0, \omega, \chi} \mathcal{L}(p_0, a_0, \omega, \chi)$$

 - Not entirely arbitrary

 - For given p_0, plans that minimize \mathcal{L} should be played often
What plan to choose?

Back to the initial announcement: two notions

- If in equilibrium gov't announces type \(c \) with density \(\mu(c) \),
 \[
 p_0(c; z, \mu) = \frac{z\nu(c)}{z\nu(c) + (1 - z)\mu(c)}
 \]
- So study
 \[
 \lim_{z \to 0} \min_{\mu} \int \mathcal{L}(p_0(a_0, \omega, \chi; z, \mu), a_0, \omega, \chi) d\mu
 \]

- Kambe (1999): gov't announces type \(c \) and becomes committed to \(c \) with exogenous \(p_0 \) probability
 - Tractable: \(p_0 \) independent of \(c \)
 - So the limit we consider is
 \[
 \lim_{p_0 \to 0} \min_{a_0, \omega, \chi} \mathcal{L}(p_0, a_0, \omega, \chi)
 \]
 - Not entirely arbitrary
 - For given \(p_0 \), plans that minimize \(\mathcal{L} \) should be played often
K-equilibrium

\[
\lim_{p \to 0} \min_a \mathcal{L}(p,a,\omega,\chi)
\]
Equilibrium for given z

- We want k and μ such that

$$\int_\mathcal{C} \mu(c) = 1$$

$$p_0(c) = \frac{z\nu(c)}{z\nu(c) + (1-z)\mu(c)}$$

$$\mathcal{L}(p_0(c), c) = k \quad \text{if } \mu(c) > 0$$

$$\mathcal{L}(p_0(c), c) \geq k \quad \text{if } \mu(c) = 0$$

- We do

 - Start with $k_0 \leq \mathcal{L}(0, c) = \mathcal{L}^N$
 - Partition states

 $$\mathcal{L}(1, c) \geq k \quad \rightarrow \quad \mu(c) = 0$$

 $$\mathcal{L}(1, c) < k$$

 - In second case find $\mu(c)$ such that

 $$\mathcal{L}(p_0(c), c) = k$$

 This is possible if $k \leq \text{value in static Nash}$

 - Set $\mu(c) = B^{-1}(p_0(c); \nu, z)$ if unset
 - Check whether $\int_\mathcal{C} \mu(c) = 1$
Equilibrium distribution of announcements

\[
\lim_{z \to 0} \int \mu_z(\omega, \chi, a_0) \, d\omega
\]

\[
\lim_{z \to 0} \int \mu_z(\omega, \chi, a_0) \, da_0
\]

- Gradualism: \(P(a_0 > \chi) = 70.5\% \). \(P(a_0 > 5\chi) = 17.2\% \). \(P(\text{decay} \leq 10\%) = 8.09\% \).
- Imperfect credibility: \(P(\chi = 0) = 1.35\% \).
Discussion
We dissect our gradualism result by linking to sustainable-plans literature

- Four models
 1. Ramsey plan
 2. Sustainable plans
 - Threat of high inflation expectations
 3. Sustainable plans with a control shock
 - Threat of inflation threshold that triggers punishment regime
 4. Recursive plans with reputation
 - Sustained with promise of anchoring of favorable expectations
A Planning Problem

\[v^{FB}(\theta) = \max_{\theta'} \min_{y, \pi} (y - y^*)^2 + \gamma \pi^2 + \theta'(\pi - \kappa y) - \theta \pi + \beta v^{FB}(\theta') \]

- Recursive version of Ramsey plan
 - Initial \(\theta = 0 \)
 - Time inconsistency: \(\theta'(0) \neq 0 \)
- FOC for \(\theta' \): \(\pi - \kappa y + \beta \frac{\partial v^{FB}(\theta')}{\partial \theta'} = 0 \) \(\rightarrow \) \(\pi = \kappa y + \beta \pi' \)
- Simulate by iterating on \(\pi_t = \pi(\theta), \theta_{t+1} = \theta'(\theta) \)
- Imperfect control irrelevant \(\rightarrow \) only adds \(\sigma^2_\epsilon (\gamma + \frac{1}{\kappa \pi}) \)
A Planning Problem

\[v^{FB}(\theta) = \max_{\theta'} \min_{y, \pi} (y - y^*)^2 + \gamma \pi^2 + \theta'(\pi - \kappa y) - \theta \pi + \beta v^{FB}(\theta') \]
Sustainable plans with expectations as threats

Descentralization

• Perfect control of inflation
• Private sector ‘threatens’ to expect ξ after deviations

$$v^\xi(p, a) = \min_{y, \pi, a'} (y - y^*)^2 + \gamma \pi^2 + \beta v^\xi(p', a')$$

subject to

$$\pi = \kappa y + \beta (p' g^\xi_{\pi}(1, a') + (1 - p') \xi)$$

$$p' = \begin{cases}
1 & \text{if } \pi = a \\
0 & \text{otherwise}
\end{cases}$$

• Use p to denote whether the government has deviated
Sustainable plans with expectations as threats
Sustainable plans with revertig triggers

- Trigger ‘punishment regime’ if deviation large enough (as in Green & Porter, 1984)

\[
v^G(a) = \min_{g,a'} \mathbb{E} \left[(y - y^*)^2 + \gamma \pi^2 + \beta \left(p'v^G(a) + (1 - p')v^P \right) \right]
\]

subject to \quad \pi = g + \epsilon

\[
\pi = \kappa y + \beta \left(p'g^G(a') + (1 - p')\xi \right)
\]

\[
p' = \begin{cases}
1 & \text{if } \frac{|\pi - a|}{a} < D \\
0 & \text{otherwise}
\end{cases}
\]

\[
v^P = \min_{\pi,a'} (y - y^*)^2 + \gamma \pi^2 + \beta \left(\theta v^G(a) + (1 - \theta)v^P \right) + \sigma^2 \epsilon \left(\gamma + \frac{1}{\kappa^2} \right)
\]

subject to \quad \pi = \kappa y + \beta \xi
Sustainable plans with reverting triggers (cont’d)

\[v^{GP}(p, a) = \min_{g, a'} \mathbb{E} \left[(y - y^*)^2 + \gamma \pi^2 + \beta \left(v^{GP}(p', a') \right) \right] \]

subject to \(\pi = g + \epsilon \)

\[\pi = \kappa y + \beta \left(p' g^{GP}(p', a') + (1 - p')\xi \right) \]

\[p' = \begin{cases}
1 & \text{if } \frac{|\pi - a|}{a} < D \\
0 & \text{otherwise} \end{cases} \]

if \(p = 1 \)

\[p' = \begin{cases}
1 & \text{with prob } \theta \\
0 & \text{with prob } 1 - \theta \end{cases} \]

if \(p = 0 \)
Sustainable plans with reverting triggers

![Graph showing plans over quarters with reverting triggers](image-url)
Recursive plans with reputation

- Planner + policy maker structure (as in Dovis & Kirpalani, 2019)

\[v^R(p, a) = \min_{g,a'} \mathbb{E} \left[(y - y^*)^2 + \gamma \pi^2 + \beta v^R(p', a') \right] \]

subject to
\[\pi = g + \epsilon \]
\[\pi = \kappa y + \beta (p'a' + (1 - p')g^R(p', a')) \]
\[p' = p + p(1 - p) \frac{f_\epsilon(\pi - a) - f_\epsilon(\pi - g^R(p, a))}{pf_\epsilon(\pi - a) + (1 - p)f_\epsilon(\pi - g^R(p, a))} \]
Recursive plans with reputation
Comparison of models

![Graph showing plans over quarters for different models: Ramsey, Average eq'm, Kambe eq'm, Recursive.](image-url)
Comparison of models

<table>
<thead>
<tr>
<th>Model</th>
<th>Ramsey</th>
<th>Kambe eq’m</th>
<th>‘Average’ rec plan</th>
<th>Recursive plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial inflation</td>
<td>1.40%</td>
<td>1.63%</td>
<td>1.58%</td>
<td>1.58%</td>
</tr>
<tr>
<td>Long-run inflation</td>
<td>0%</td>
<td>0.44%</td>
<td>0.65%</td>
<td>0.65%</td>
</tr>
<tr>
<td>Value function</td>
<td>0.3364</td>
<td>0.7552</td>
<td>0.7589</td>
<td>0.7554</td>
</tr>
</tbody>
</table>

Table 1: Inflation plans
Comparison of models

<table>
<thead>
<tr>
<th>Model</th>
<th>Ramsey</th>
<th>Kambe eq’m</th>
<th>‘Average’ rec plan</th>
<th>Recursive plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial inflation</td>
<td>1.40%</td>
<td>1.63%</td>
<td>1.58%</td>
<td>1.58%</td>
</tr>
<tr>
<td>Long-run inflation</td>
<td>0%</td>
<td>0.44%</td>
<td>0.65%</td>
<td>0.65%</td>
</tr>
<tr>
<td>Value function</td>
<td>0.3364</td>
<td>0.7552</td>
<td>0.7589</td>
<td>0.7554</td>
</tr>
</tbody>
</table>

Table 1: Inflation plans

- Kambe gains from pre-announcing: lower asymptote, more credibility esp. early on
Comparison of models

<table>
<thead>
<tr>
<th>Model</th>
<th>Ramsey</th>
<th>Kambe eq’m</th>
<th>‘Average’ rec plan</th>
<th>Recursive plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial inflation</td>
<td>1.40%</td>
<td>1.63%</td>
<td>1.58%</td>
<td>1.58%</td>
</tr>
<tr>
<td>Long-run inflation</td>
<td>0%</td>
<td>0.44%</td>
<td>0.65%</td>
<td>0.65%</td>
</tr>
<tr>
<td>Value function</td>
<td>0.3364</td>
<td>0.7552</td>
<td>0.7589</td>
<td>0.7554</td>
</tr>
</tbody>
</table>

Table 1: Inflation plans

- Recursive gains from flexibility: modulates a' to developments in p
Conclusion
Concluding Remarks

• Model of reputational dynamics and policy
 • Simple environment
 • Focus on low reputation limit

• Credibility-dynamics concerns influence choice of policy
 • Tradeoff between literal promises and incentives
 • Gradual plans boost reputation-building incentives for future decision-makers

• Structure of reputation maps into the incentive constraint of a planner’s problem
 ... creating large option values of complying
 ... which are larger when the plan is backloaded
Bayes’ Law

\[B(p, \pi, a, g) = p + p(1 - p) \frac{f_\epsilon(\pi - a) - f_\epsilon(\pi - g)}{pf_\epsilon(\pi - a) + (1 - p)f_\epsilon(\pi - g)} \]
Results

\[
\lim_p \arg\min_a \mathcal{L}(p,a,\omega,\chi)
\]

Decay (\(\omega\))

\(\chi = 0\%\)
\(\chi = 0.0978\%\)
\(\chi = 0.196\%\)
\(\chi = 0.294\%\)
\(\chi = 0.392\%\)
\(\chi = 0.49\%\)
\(\chi = 0.588\%\)
\(\chi = 0.686\%\)
\(\chi = 0.784\%\)
\(\chi = 0.883\%\)
\(\chi = 0.981\%\)
Imagine an incumbent facing a sequence of potential entrants

- Each period, entrant decides entry, incumbent fights or accommodates
 - Incumbent prefers entrant to stay out but prefers to accommodate if entry
- Fighting the first entrant doesn’t affect the decision of following entrants

- Reputation as incomplete information
 - What if the incumbent could be behavioral and always produce \(q \) upon entry?
- Incentive for the rational incumbent to pretend to be behavioral
- Independent of the ‘objective’ probability of behavioral
Imagine an incumbent facing a sequence of potential entrants

- Each period, entrant decides entry, incumbent *fights* or *accomodates*
 - Incumbent prefers entrant to stay out but prefers to accomodate if entry
- Fighting the first entrant doesn’t affect the decision of following entrants

- **Reputation** as incomplete information
 - What if the incumbent could be behavioral and always produce q upon entry?
- Incentive for the rational incumbent to pretend to be behavioral
- *Independent* of the ‘objective’ probability of behavioral
Imagine an incumbent facing a sequence of potential entrants

- Each period, entrant decides entry, incumbent fights or accommodates
 - Incumbent prefers entrant to stay out but prefers to accommodate if entry
- Fighting the first entrant doesn’t affect the decision of following entrants

- Reputation as incomplete information
 - What if the incumbent could be behavioral and always produce q upon entry?
- Incentive for the rational incumbent to pretend to be behavioral
- Independent of the ‘objective’ probability of behavioral
MACROECONOMISTS

WHETHER OR NOT SOMEONE DEVIATED ON THE EQUILIBRIUM PATH

IS THIS REPUTATION?